Multiple Factor Analysis

- 1 Data Issues
- 2 Common Structure
- Groups Study
- 4 Partial Analyses
- 6 Example

"Doing a data analysis, in good mathematics, is simply searching eigenvectors, all the science of it (the art) is just to find the right matrix to diagonalize" Benzécri

Examples with continuous and/or categorical sets of variables:

- genomic: DNA, protein
- sensory analysis: sensorial, physico-chemical
- survey: student health (addicted consumptions, psychological conditions, sleep, identification, etc.)
- economy: economic indicators for countries by year

Example: gliomas brain tumors

- Transcriptional modification (RNA), microarrays: 489 variables
- Damage to DNA (CGH array): 113 variables

Objectives

- Study the similarities between individuals with respect to all the variables
- Study the linear relationships between variables

 \Rightarrow taking into account the structure on the data (balancing the influence of each group)

- Find the common structure with respect to all the groups highlight the specificities of each group
- Compare the typologies obtained from each group of variables (separate analyses)

Balancing the groups of variables

MFA is a weighted PCA:

- compute the first eigenvalue λ_1^j of each group of variables
- perform a global PCA on the weighted data table:

$$\left[\frac{X_1}{\sqrt{\lambda_1^1}};\frac{X_2}{\sqrt{\lambda_1^2}};\ldots;\frac{X_J}{\sqrt{\lambda_1^J}}\right]$$

 \Rightarrow Same idea as in PCA when variables are standardized: variables are weighted to compute distances between individuals i and i'

Balancing the groups of variables

This weighting allows that:

- same weight for all the variables of one group: the structure of the group is preserved
- for each group the variance of the main dimension of variability (first eigenvalue) is equal to 1
- no group can generate by itself the first global dimension
- a multidimensional group will contribute to the construction of more dimensions than a one-dimensional group

Individuals and variables representations

Same representations and same interpretation as in PCA

Groups study

 \Rightarrow Synthetic comparison of the groups

 \Rightarrow Are the relative positions of individuals globally similar from one group to another? Are the partial clouds similar?

 \Rightarrow Do the groups bring the same information?

Similarity between two groups

Measure of similarity between groups K_j and K_m :

$$\mathcal{L}_{g}(K_{j}, K_{m}) = \sum_{k \in K_{j}} \sum_{l \in K_{m}} cov^{2} \left(\frac{x_{.k}}{\lambda_{1}^{k}}, \frac{x_{.l}}{\lambda_{1}^{l}} \right)$$

 $\mathsf{MFA}=\mathsf{weighted}\ \mathsf{PCA}\Rightarrow\mathsf{first}\ \mathsf{principal}\ \mathsf{component}\ \mathsf{of}\ \mathsf{MFA}\ \mathsf{maximizes}$

$$\sum_{j=1}^{J} \mathcal{L}_{\mathbf{g}}(\mathbf{v}_1, \mathbf{K}_j) = \sum_{j=1}^{J} \sum_{k \in \mathbf{K}_j} cov^2 \left(\frac{\mathbf{x}_{.k}}{\sqrt{\lambda_1^j}}, \mathbf{v}_1 \right)$$

Inertia of K_j projected on v_1

Representation of the groups

Group j has the coordinates $(\mathcal{L}_g(v_1, K_i), \mathcal{L}_g(v_2, K_i))$

- 2 groups are all the more close that they induce the same structure
- The 1st dimension is common to all the groups
- 2nd dimension mainly due

Numeric indicators

> res.mfa\$group\$Lg CGH expr WH0 MFA CGH 2.51 0.60 0.46 1.96 expr 0.60 1.10 0.36 1.07 WH0 0.46 0.36 0.50 0.51 MFA 1.96 1.07 0.51 1.91

> res.mfa\$group\$RV

 CGH
 expr
 WHO
 MFA

 CGH
 1.00
 0.36
 0.41
 0.90

 expr
 0.36
 1.00
 0.48
 0.74

 WHO
 0.41
 0.48
 1.00
 0.53

 MFA
 0.90
 0.74
 0.53
 1.00

$$\mathcal{L}_{g}(K_{j}, K_{j}) = \frac{\sum_{k=1}^{K_{j}} (\lambda_{k}^{j})^{2}}{(\lambda_{1}^{j})^{2}} = 1 + \frac{\sum_{k=2}^{K_{j}} (\lambda_{k}^{j})^{2}}{(\lambda_{1}^{j})^{2}}$$

- CGH gives richer description (\mathcal{L}_g greater)
- RV: a standardized \mathcal{L}_g
- CGH and expr are not linked (RV=0.36)
- CGH closest to the overall (RV=0.90)

Contribution of each group to each component of the MFA

> rea	s.mfa\$į	group\$0	contrib
	Dim.1	Dim.2	Dim.3
CGH	45.8	93.3	78.1
expr	54.2	6.7	21.9

- Similar contribution of the 2 groups to the first dimension
- Second dimension only due to CGH

The RV coefficient

 $X_{j_{(l \times K_j)}}$ and $X_{m_{(l \times K_m)}}$ not directly comparable $W_{j_{(l \times l)}} = X_j X'_j$ and $W_{m_{(l \times l)}} = X_m X'_m$ can be compared Inner product matrices = relative position of the individuals

Covariance between two groups:

$$< W_j, W_m > = \sum_{k \in K_j} \sum_{l \in K_m} cov^2(x_{.k}, x_{.l})$$

Correlation between two groups:

$$RV(K_j, K_m) = \frac{\langle W_j, W_m \rangle}{\|W_j\| \|W_m\|} \qquad \qquad 0 \leq RV \leq 1$$

RV = 0: variables of K_j are uncorrelated with variables of K_m RV = 1: the two clouds of points are homothetic

Partial analyses

• Comparison of the groups through the individuals

 \Rightarrow Comparison of the typologies provided by each group in a common space

 \Rightarrow Are there individuals very particular with respect to one group?

• Comparison of the separate PCA

Projection of partial points

Groups Study

Partial Analyses

Example

Partial points

Groups Study

Partial Analyses

Example

Partial points

Representation of the partial points

- an individual is at the barycentre of its partial points
- an individual is all the more "homogeneous" that its superposed representations are close (res.mfa\$ind\$within.inertia)

Representation of the partial components

Do the separate analyses give similar dimensions as MFA?

Representation of the partial components

- The first dimension of each group is well projected
- CGH has same dimensions as MFA

Use of biological knowledge

Genes can be grouped by gene ontology (GO) biological process

Use of biological knowledge

Biological processes considered as supplementary groups of variables

Modular approach

Groups Study

Example

Use of biological knowledge

Many biological processes induce the same structure on the individuals than MFA

Back to the wine example!

Continuous variables					Categorical
	Expert (27)	Consu mer (15)	Student (15)	Preference (60)	Label (1)
wine 1					
wine 2					
wine 10					

Objectives:

- How are the products described by the panels?
- Do the panels describe the products in a same way? Is there a specific description done by one panel?

Practice with R

- 1 Define groups of active and supplementary variables
- 2 Scale or not the variables
- 3 Perform MFA
- **4** Choose the number of dimensions to interpret
- **5** Simultaneously interpret the individuals and variables graphs
- 6 Study the groups of variables
- Study the partial representations
- 8 Use indicators to enrich the interpretation

Practice with R

```
library(FactoMineR)
Expert <- read.table("http://factominer.free.fr/useR2010/Expert_wine.csv",</pre>
   header=TRUE, sep=";", row.names=1)
Consu <- read.table(".../Consumer_wine.csv",header=T,sep=";",row.names=1)</pre>
Stud <- read.table(".../Student_wine.csv",header=T,sep=";",row.names=1)</pre>
Pref <- read.table(".../Pref_wine.csv",header=T,sep=";",row.names=1)</pre>
palette(c("black","red","blue","orange","darkgreen","maroon","darkviolet"))
complet <- cbind.data.frame(Expert[,1:28],Consu[,2:16],Stud[,2:16],Pref)</pre>
res.mfa <- MFA(complet,group=c(1,27,15,15,60),type=c("n",rep("s",4)),
   num.group.sup=c(1,5),graph=FALSE,
   name.group=c("Label","Expert","Consumer","Student","Preference"))
plot(res.mfa,choix="group",palette=palette())
plot(res.mfa,choix="var",invisible="sup",hab="group",palette=palette())
plot(res.mfa, choix="var", invisible="actif", lab.var=FALSE, palette=palette())
plot(res.mfa,choix="ind",partial="all",habillage="group",palette=palette())
plot(res.mfa,choix="axes",habillage="group",palette=palette())
dimdesc(res.mfa)
write.infile(res.pca,file="my_FactoMineR_results.csv") #to export a list
```

Representation of the individuals

- The two labels are well separated
- Vouvray are sensorially more different
- Several groups of wines, ...

Representation of the active variables

Dim 1 (42.52 %)

Representation of the active variables

Dim 1 (42.52 %)

Representation of the groups

- 2 groups are all the more close that they induce the same structure
- The 1st dimension is common to all the panels
- 2nd dimension mainly due to the experts
- Preference linked to sensory description

Representation of the partial points

Dim 1 (42.52 %)

Groups Study

Representation of the partial dimensions

- The two first dimensions of each group are well projected
- Consumer has same dimensions as MFA

Representation of supplementary continuous variables

Preferences are linked to sensory description The favourite wine is *Vouvray Aubussière Silex*

Helps to interpret

 Contribution of each group of variables to each component of the MFA

> res.mfa	res.mfa\$group\$contrib					
	Dim.1	Dim.2	Dim.3			
Expert	30.5	46.0	33.7			
Consumer	33.2	23.1	31.2			
Student	36.3	30.9	35.1			

- Similar contribution of the 3 groups to the first dimension
- Second dimension mainly due to the expert
- Correlation between the global cloud and each partial cloud

> res.mfa\$group\$correlation						
	Dim.1	Dim.2	Dim.3			
Expert	0.95	0.95	0.96			
Consumer	0.95	0.83	0.87			
Student	0.99	0.99	0.84			

First components are highly linked to the 3 groups: the 3 clouds of points are nearly homothetic

Similarity measures between groups

> res.mfa\$group\$Lg						
	Expert	Consumer	${\tt Student}$	Preference	Label	MF A
Expert	1.45	0.94	1.17	1.01	0.89	1.33
Consumer	0.94	1.25	1.04	1.11	0.28	1.21
Student	1.17	1.04	1.29	1.03	0.62	1.31
Preference	1.01	1.11	1.03	1.47	0.37	1.18
Label	0.89	0.28	0.62	0.37	1.00	0.67
MFA	1.33	1.21	1.31	1.18	0.67	1.44

> res.mfa\$group\$RV

	Expert	Consumer	Student	Preference	Label	MF A
Expert	1.00	0.70	0.85	0.69	0.74	0.92
Consumer	0.70	1.00	0.82	0.82	0.25	0.90
Student	0.85	0.82	1.00	0.75	0.55	0.96
Preference	0.69	0.82	0.75	1.00	0.31	0.81
Label	0.74	0.25	0.55	0.31	1.00	0.56
MF A	0.92	0.90	0.96	0.81	0.56	1.00

- Expert gives a richer description (\mathcal{L}_g greater)
- Groups Student and Expert are linked (RV = 0.85)
- Group Student is the closest to the overall (RV = 0.96)

To go further

- Mixed data: MFA with 1 group = 1 variable if there are only continuous variables, PCA is recovered; if there are only categorical variables, MCA is recovered a specific function: AFDM
- MFA used for methodological purposes:
 - comparison of coding (continuous or categorical)
 - comparison between preprocessing (standardized PCA and unstandardized PCA)
 - comparison of results from different analyses
- Hierarchical Multiple Factor Analysis Takes into account a hierarchy on the variables: variables are grouped and subgrouped (like in questionnaires structured in topics and subtopics)