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Introduction MCA through the example Advanced comments Clustering

MCA deals with which kind of data?

• MCA deals with categorical variables, but continuous variables
can also be included in the analysis

• Many examples (almost in survey) and today we illustrate
MCA with:

• Questionnaire: tea consumers’ habits
• Ecological data
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Multiple Correspondence Analysis

• Generalization of PCA, Generalization of CA

• Analyse the pattern of relationships of several categorical
variables

• Dimensionality reduction, sum-up a data table

⇒ Factorial Analysis: data visualisation with a lot of graphical
representations to represent proximities between individuals and
proximities between variables

⇒ Pre-processing: MCA before clustering
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Tea data

• 300 individuals
• 3 kinds of variables:

• the way you drink tea (18 questions): kind of tea drunk? How
do you drink your tea: with lemon, milk?

• the product’s perception (12 questions): is tea good for
health? is it stimulating?

• personal details (4 questions): sex, age
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Problems - objectives

• Individuals study: similarity between individuals (for all the
variables) → partition between individuals.
Individuals are different if they don’t take the same levels

• Variables study: find some synthetic variables (continuous
variables that sum up categorical variables); link between
variables ⇒ levels study

• Categories study:
• two levels of different variables are similar if individuals that

take these levels are the same (ex: 65 years and retire)
• two levels are similar if individuals taking these levels behave

the same way, they take the same levels for the other variables
(ex: 60 years and 65 years)

• Link between these studies: characterization of the groups of
individuals by the levels (ex: executive dynamic women)
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Indicator matrix
• Binary coding of the factors: a factor with Kj levels → Kj

columns containing binary values, also called dummy variables
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Burt matrix
• This matrix concatenates all two-way cross-tabulations

between pairs of variables
• The analysis of the Burt matrix only gives results for the levels
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History

At the beginning, when Correspondence Analysis algorithms were
available, someone has the idea to use theses algorithms on the In-
dicator Matrix! You could see the Indicator Matrix (with a lot of
imagination!) as a contingency table which cross two categorical
variables. This strategy leads to very interesting results: that how is
born Multiple Correspondence Analysis. (Lebart)
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Construction of the cloud of individuals
⇒ We need a distance between individuals:
• Two individuals take the same levels: distance = 0
• Two individuals take all the categories except one which is

uncommon: we want to put it far away
• Two individuals have in common a rare level: they should be

closed even if they take different levels for the other variables
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Construction of the cloud of levels
⇒ We need a distance between levels:
• Two levels are closed if there is a lot of common individuals

which take these levels
• Rare levels are far away from the others
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History (later)

MCA has been (re)discovered many times and could be seen under
different points of view:

• PCA on a particular data table with particular weights for the
variables

• CA on the Indicator Matrix
• CA on the Burt Table

MCA is also known under several different names such as
homogeneity analysis
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look at your data

library(FactoMineR)
data(tea)
summary(tea)
par(ask=T)
for (i in 1:ncol(tea)) barplot(table(tea[,i]))

Inertia of category k =
1
J

(
1− Ik

I

)
⇒ How to deal with rare levels?

• Delete individuals (not a good idea!)

• Group levels

• "Ventilation": allocate at random
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Introduction MCA through the example Advanced comments Clustering

Define active variables
18 variables 4 variables 12 variables

Which kind of 
tea do you 

drink?

Who 
are 

you?

Which 
adjectives do 
you associate 

to the tea?

• Active variables: the way you drink tea
• Supplementary: the others

⇒ How to deal with continuous variable?

• Supplementary information: projected on the dimensions and
calculate the correlation with each dimension

• Active Information: cut the variables in classes.

res.mca=MCA(tea,quanti.sup=19,quali.sup=20:36)
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Graph of the individuals

plot(res.mca,invisible=c("var","quali.sup","quanti.sup"))
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Introduction MCA through the example Advanced comments Clustering

Graph of the active levels

plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"))

Distance between levels and the
barycenter:
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Transition Formulae

Fs(i) =
1√
λs

∑
k

xik

J
Gs(k)

⇒ Individual i is (up to 1√
λs

) at the barycenter its levels

Gs(k) =
1√
λs

∑
i

xik

Ik
Fs(i)

⇒ Level k is (up to 1√
λs

) at the barycenter of the individuals who
take this level

⇒ Possibility to simultaneously represent the two representations
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Introduction MCA through the example Advanced comments Clustering

Superimposed representation
plot(res.mca,invisible=c("quali.sup","quanti.sup"))
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Introduction MCA through the example Advanced comments Clustering

Interpretation of the location of the levels

plot(res.mca$ind$coord[,1:2],col=as.numeric(tea[,17]),pch=20)
legend("topright",legend=levels(tea[,17]),text.col=1:3,col=1:3)
aa=by(res.mca$ind$coord,tea[,17],FUN=mean)[[3]][1:2]
points(aa[1],aa[2],col=3,pch=15,cex=1.5)
x11()
plot(res.mca$ind$coord[,1:2],col=as.numeric(tea[,18]),pch=20)
legend("topright",legend=levels(tea[,18]),text.col=1:6,col=1:6)
bb=by(res.mca$ind$coord,tea[,18],FUN=mean)[[5]][1:2]
points(bb[1],bb[2],col=5,pch=15,cex=1.5)
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Interpretation of the location of the levels
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Supplementary levels representation
plot(res.mca,invisible=c("var","ind","quanti.sup"),cex=0.8)
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Continuous supplementary variable
plot(res.mca,invisible=c("var","ind","quali.sup"),cex=0.8)
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Description of the dimensions
By qualitative variables (F -test), categories (t-test) and
quantitative variables (correlation)
dimdesc(res.mca)

$‘Dim 1‘$quali $‘Dim 1‘$category
P-value Estimate P-value

where 1.255462e-35 tearoom 0.2973107 6.082138e-32
tearoom 6.082138e-32 chain store+tea shop 0.3385378 1.755544e-25
how 1.273180e-23 friends 0.1995083 8.616289e-20
friends 8.616289e-20 resto 0.2080260 2.319804e-18
resto 2.319804e-18 tea time 0.1701136 1.652462e-15
tea.time 1.652462e-15 tea bag+unpackaged 0.2345703 6.851637e-14
price 4.050469e-14 pub 0.1813713 5.846592e-12
pub 5.846592e-12 work 0.1417041 3.000872e-09
work 3.000872e-09 Not.work -0.1417041 3.000872e-09
How 4.796010e-07 green -0.2456910 6.935593e-10
Tea 8.970954e-07 Not.pub -0.1813713 5.846592e-12
lunch 1.570629e-06 Not.tea time -0.1701136 1.652462e-15
frequency 1.849071e-06 tea bag -0.2318245 3.979797e-16
friendliness 2.706357e-06 Not.resto -0.2080260 2.319804e-18
evening 5.586801e-05 chain store -0.2401244 1.254499e-18

Not.friends -0.1995083 8.616289e-20
Not.tearoom -0.2973107 6.082138e-32
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Inertia

• Variable Inertia:

Inertia (j) =

Kj∑
k=1

Inertia (k) =

Kj∑
k=1

1
J

(
1− Ik

I

)
=

Kj − 1
J

⇒ The inertia is large when the variable has many levels

Remark: should we use variables with equal number of levels?
No: it doesn’t matter because the projected inertia of each
variable on each axis is bounded by 1/J.

• Total Inertia:
total inertia =

K
J
− 1
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Choice of the number of dimensions to interpret

res.mca$eig

• Bar plot: difficult to make a choice

• K − J non-null eigenvalues,
∑

λs = K
J − 1

Average of an eigenvalue: 1
K−J ×

∑
s λs = 1

J ⇒ a rule consists
to keep the eigenvalues greater than 1/J

• Bootstrap confidence interval
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Why percentages of inertia are small?

• Individuals are in RK−J ⇒ Generally, the percentage of
variance explained by the first axis is small

• Maximum percentage for one dimension:

λs∑
λs
× 100 ≤ 1

K−J
J

× 100

≤ J
K − J

× 100

With K = 100, J = 10: λs ≤ 11.1 %

aa=as.factor(rep(1:10,each=100))
bb=cbind.data.frame(aa,aa,aa,aa,aa,aa,aa,aa,aa,aa)
colnames(bb)=paste("a",1:10,sep="")
res=MCA(bb)
res$eig[1:10,]
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Why the percentages of inertia are small?

Moreover, the percentages are pessimistic!
If the percentages of inertia are calculated from the Burt table
analysis:

burt=t(tab.disjonctif(tea[,1:18]))%*%tab.disjonctif(tea[,1:18])
res.burt=CA(burt)
res.burt$eig[1:10,]

34.8 % explained by the two first axes instead of 19 % (with exactly the
same representations for the levels)

⇒ Benzécri and Greenacre noticed that this percentage is optimistic and
proposed coefficient to adjust the inertia
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Helps to interpret

• Contribution and cos2 for the individuals and the levels

res.mca$ind$contrib
res.mca$ind$cos2
res.mca$var$contrib
res.mca$var$cos2

⇒ Extreme levels do not necessarily contribute the most (it depends
on the frequencies)
⇒ Cos2 are very small... but it was awaited since inertia is small

• Variable contribution: CTR(j) =
∑

k CTR(k)

• Remark:
η2(Fs , j) =

CTR(j)
Jλs
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Remarks

• Return to your data with contingency tables →
correspondence analysis

• Non-linear relationships can be highlighted
• Gutman effect
• MCA as a pre-processing for clustering
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A pre-processing for Clustering

• Transformation of the data: categorical → continuous
• Principal components (individuals coordinates) are synthetic

variables: the most linked to the other variables:
argmaxv

1
J

∑
j η2(v , j) = Fs

• "Denoising": retain only 95% of the information

• Clustering on the individuals coordinates (with variance λs)
⇒ hierarchical clustering with ward criteria (based on inertia)

• Classification (Fisher Linear Discriminant) on the individuals
coordinates (with variance λs)
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Hierarchical Clustering
res.mca=MCA(tea,quanti.sup=19,quali.sup=20:36,ncp=20,graph=F)
library(cluster)
classif = agnes(res.mca$ind$coord,method="ward")
plot(classif,main="Dendrogram",ask=F,which.plots=2,labels=FALSE)

0
2

4
6

Dendrogram

Agglomerative Coefficient =  0.9
res.mca$ind$coord

H
ei

gh
t

30 / 32



Introduction MCA through the example Advanced comments Clustering

Represent the clusters on your factorial map
clust = cutree(classif,k=3)
tea.comp = cbind.data.frame(tea,res.mca$ind$coord[,1:3],factor(clust))
res.aux=MCA(tea.comp,quanti.sup=c(19,37:39),quali.sup=c(20:36,40),graph=F)
plot(res.aux,invisible=c("quali.sup","var","quanti.sup"),habillage=40)
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Describe each cluster
catdes(tea.comp,ncol(tea.comp))

$test.chi
P.value df P.value df

where 2.316552e-49 4 tearoom 1.025632e-09 2
how 3.592323e-35 4 dinner 3.874810e-09 2
price 1.142914e-31 10 friends 1.859075e-06 2
How 5.884403e-10 6

$category$‘2‘
Cla/Mod Mod/Cla Global p.value V-test

price=p_upscale 0.73584906 0.6610169 0.1766667 1.467589e-22 9.702737
where=tea shop 0.90000000 0.4576271 0.1000000 6.532117e-19 8.805180
how=unpackaged 0.77777778 0.4745763 0.1200000 3.184180e-16 8.082056
dinner=dinner 0.71428571 0.2542373 0.0700000 1.094845e-07 5.182468
Tea=Earl Grey 0.11917098 0.3898305 0.6433333 8.396333e-06 -4.303756
how=tea bag 0.09411765 0.2711864 0.5666667 3.162813e-07 -4.981001
dinner=Not.dinner 0.15770609 0.7457627 0.9300000 1.094845e-07 -5.182468
where=chain store 0.08854167 0.2881356 0.6400000 7.994965e-10 -6.034051

$quanti$‘2‘
v.test Mean in category Overall mean sd in category Overall sd

Dim.2 12.92675 0.5267543 6.280824e-17 0.3746555 0.3486355
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