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Research activities

• Exploratory multivariate data analysis (principal components
methods to visualize data)

• Missing values

• Fields of application: Bio-sciences; sensory analysis

• Books (Exploratory multivariate analysis with R, R for
Statistics and 3 books in French)

• R packages (FactoMineR - missMDA - SensoMineR)
• A MOOC on exploratory multivariate data analysis
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Outline

1 Introduction

2 Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation
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Missing values

Gertrude Mary Cox

“The best thing to do with missing
values is not to have any”

Missing values are ubiquitous:
• no answer in a questionnaire
• data that are lost or destroyed
• machines that fail
• plants damaged
• ...

Still an issue in the big data area
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A real dataset

O3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 O3v
0601 NA 15.6 18.5 18.4 4 4 8 NA -1.7101 -0.6946 84
0602 82 17 18.4 17.7 5 5 7 NA NA NA 87
0603 92 NA 17.6 19.5 2 5 4 2.9544 1.8794 0.5209 82
0604 114 16.2 NA NA 1 1 0 NA NA NA 92
0605 94 17.4 20.5 NA 8 8 7 -0.5 NA -4.3301 114
0606 80 17.7 NA 18.3 NA NA NA -5.6382 -5 -6 94
0607 NA 16.8 15.6 14.9 7 8 8 -4.3301 -1.8794 -3.7588 80
0610 79 14.9 17.5 18.9 5 5 4 0 -1.0419 -1.3892 NA
0611 101 NA 19.6 21.4 2 4 4 -0.766 NA -2.2981 79
0612 NA 18.3 21.9 22.9 5 6 8 1.2856 -2.2981 -3.9392 101
0613 101 17.3 19.3 20.2 NA NA NA -1.5 -1.5 -0.8682 NA
...

...
...

...
...

...
...

...
...

...
...

0919 NA 14.8 16.3 15.9 7 7 7 -4.3301 -6.0622 -5.1962 42
0920 71 15.5 18 17.4 7 7 6 -3.9392 -3.0642 0 NA
0921 96 NA NA NA 3 3 3 NA NA NA 71
0922 98 NA NA NA 2 2 2 4 5 4.3301 96
0923 92 14.7 17.6 18.2 1 4 6 5.1962 5.1423 3.5 98
0924 NA 13.3 17.7 17.7 NA NA NA -0.9397 -0.766 -0.5 92
0925 84 13.3 17.7 17.8 3 5 6 0 -1 -1.2856 NA
0927 NA 16.2 20.8 22.1 6 5 5 -0.6946 -2 -1.3681 71
0928 99 16.9 23 22.6 NA 4 7 1.5 0.8682 0.8682 NA
0929 NA 16.9 19.8 22.1 6 5 3 -4 -3.7588 -4 99
0930 70 15.7 18.6 20.7 NA NA NA 0 -1.0419 -4 NA
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Some references

Schafer (1997), Little & Rubin (1987, 2002)

Joseph L. Schafer Roderick Little Donald Rubin

Suggested reading: chap 25 of Gelman & Hill (2006)

Andrew Gelman Jennifer L. Hill
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Missing values problematic

A very simple way: deletion (default lm function in R)

Dealing with missing values depends on:
• the pattern of missing values
• the mechanism leading to missing values

• MCAR: probability does not depend on any values
• MAR: probability may depend on values on other variables
• MNAR: probability depends on the value itself

(Ex: Income - Age)

⇒ Visualization of missing data
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Count missing values

> library(VIM)
> res<-summary(aggr(don,prop=TRUE,combined=TRUE))$combinations
> res[rev(order(res[,2])),]

Variables sorted by
number of missings: Combinations Count Percent
Variable Count 0:0:0:0:0:0:0:0:0:0:0 13 11.6071429

Ne12 0.37500000 0:1:1:1:0:0:0:0:0:0:0 7 6.2500000
T9 0.33035714 0:0:0:0:0:1:0:0:0:0:0 5 4.4642857

T15 0.33035714 0:1:0:0:0:0:0:0:0:0:0 4 3.5714286
Ne9 0.30357143 0:1:0:0:1:1:1:0:0:0:0 3 2.6785714
T12 0.29464286 0:0:1:0:0:0:0:0:0:0:0 3 2.6785714

Ne15 0.28571429 0:0:0:1:0:0:0:0:0:0:0 3 2.6785714
Vx15 0.18750000 0:0:0:0:1:1:1:0:0:0:0 3 2.6785714
Vx9 0.16071429 0:0:0:0:0:1:0:0:0:0:1 3 2.6785714

maxO3 0.14285714 0:1:1:1:1:0:0:0:0:0:0 2 1.7857143
maxO3v 0.10714286 0:0:0:0:1:0:0:0:0:1:0 2 1.7857143

Vx12 0.08928571 0:0:0:0:0:0:1:1:0:0:0 2 1.7857143
0:0:0:0:0:0:1:0:0:0:0 2 1.7857143
..................... . ...
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Pattern visualization
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> library(VIM)
> aggr(don,only.miss=TRUE,sortVar=TRUE)

11 / 81



Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Visualization
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> library(VIM)
> matrixplot(don,sortby=2)
> marginplot(don[,c("T9","maxO3")])
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Visualization with Multiple Correspondence Analysis

⇒ Create the missingness matrix

> mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))
> mis.ind[is.na(don)]="m"
> dimnames(mis.ind)=dimnames(don)
> mis.ind

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
20010601 "o" "o" "o" "m" "o" "o" "o" "o" "o" "o" "o"
20010602 "o" "m" "m" "m" "o" "o" "o" "o" "o" "o" "o"
20010603 "o" "o" "o" "o" "o" "m" "m" "o" "m" "o" "o"
20010604 "o" "o" "o" "m" "o" "o" "o" "m" "o" "o" "o"
20010605 "o" "m" "o" "o" "m" "m" "m" "o" "o" "o" "o"
20010606 "o" "o" "o" "o" "o" "m" "o" "o" "o" "o" "o"
20010607 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"
20010610 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"
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Visualization with Multiple Correspondence Analysis

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

MCA graph of the categories

Dim 1 (19.07%)

D
im

 2
 (

17
.7

1%
)

maxO3_m

maxO3_o

T9_m

T9_o

T12_m

T12_o

T15_m

T15_o

Ne9_m

Ne9_o

Ne12_m

Ne12_o

Ne15_m

Ne15_o

Vx9_m

Vx9_o

Vx12_m

Vx12_o

Vx15_m
Vx15_o

maxO3v_m

maxO3v_o

> library(FactoMineR)
> resMCA <- MCA(mis.ind)
> plot(resMCA,invis="ind",title="MCA graph of the categories")
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Recommended approaches

⇒ Modify the method, the estimation process to deal with missing
values

⇒ Imputation (multiple imputation) to get a completed data set
on which you can perform any statistical method
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Expectation - Maximization (Dempster et al., 1977)

Need the modification of the estimation process (not always easy!)

Rationale to get ML estimates on the observed values max Lobs
through max of Lcomp of X = (Xobs ,Xmiss). Augment the data to
simplify the problem

E step (conditional expectation):

Q(θ, θ`) =
∫

ln(f (X |θ))f (Xmiss |Xobs , θ
`)dXmiss

M step (maximization):

θ`+1 = argmaxθQ(θ, θ`)

Result: when θ`+1 max Q(θ, θ`) then L(Xobs , θ
`+1) ≥ L(Xobs , θ

`)
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Maximum likelihood approach

Hypothesis xi . ∼ N (µ,Σ)

⇒ Point estimates with EM:
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)

⇒ Variances:
• Supplemented EM (Meng, 1991)
• Bootstrap approach:

• Bootstrap rows: X1, ... , XB

• EM algorithm: (µ̂1, Σ̂
1
), ... , (µ̂B , Σ̂

B
)

Issue: develop a specific method for each statistical method
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Single imputation methods

●
●●●● ● ● ●

●

●

●

● ●●

●

● ●

●

●

●● ●●●●●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●

●

●●

●

●

●●

●

● ●●

●

●

● ●●

●

● ● ●●●

●

●

●

●

●

●

●

● ●

●

● ●●●● ●

●

●● ●

●

●

●
●

●

●

●

●

●●

●

●● ●

●

●
●

●

●●

●

●●●

●

●

● ●

●
●

●●

●

● ● ●● ●●

●

●

●

●
●

●

●

● ●●

●

● ● ●● ● ●

●

●
●

● ●●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

● ●● ●● ●● ●●●●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●●

●

●

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

Mean imputation

X

Y ●●●● ● ●● ●●● ●●● ●●●●● ●● ●● ●●● ●●●● ● ●●● ●● ● ●●● ●● ● ● ●● ●●●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●● ● ● ●● ●●●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●●●● ●● ●●● ●●● ●●● ●● ●● ● ● ●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

Regression imputation

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Stochastic regression imputation

X

Y

●

●

●
●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

µy = 0
σy = 1
ρ = 0.6

CIµy95%

0.01
0.5
0.30
39.4

0.01
0.72
0.78
61.6

0.01
0.99
0.59
70.8

⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the
imputed data set are underestimated
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Multiple imputation (Rubin, 1987)

• Generate M plausible values for each missing value
(F̂ û′)ij (F̂ û′)1ij + ε

1

ij (F̂ û′)2ij + ε
2

ij
(F̂ û′)3ij + ε

3

ij (F̂ û′)Bij + ε
B
ij

• Perform the analysis on each imputed data set: θ̂m, V̂ar
(
θ̂m
)

• Combine the results: θ̂ = 1
M
∑M

m=1 θ̂m

T = 1
M
∑M

m=1 V̂ar
(
θ̂m
)

+
(
1 + 1

M

)
1

M−1
∑M

m=1

(
θ̂m − θ̂

)2

⇒ Aim: provide estimation of the parameters and of their variability
(taken into account the variability due to missing values)

19 / 81



Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

A multiple imputation procedure requires a single
imputation method

1 Single imputation based on normal distribution
2 Single imputation with PCA

3 Multiple imputation based on normal distribution
4 Multiple imputation with Bayesian PCA
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Outline

1 Introduction

2 Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Joint modeling

⇒ Hypothesis xi . ∼ N (µ,Σ)

Bivariate case with missing values on Y (stochastic regression):
• Estimate β and σ
• Draw from the predictive yi ∼ N

(
xi β̂, σ̂2

)
Extension to the multivariate case:

• Estimate µ and Σ from an incomplete dataset with EM
• Draw from N

(
µ̂, Σ̂

)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> rngseed(123)
> imp <- imp.norm(pre,thetahat,don)
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Conditional modeling

⇒ A model per variable

Example with regression:
1 Initial imputation: mean imputation
2 Fit a stochastic regression Xobs

j on the other variables Xobs
−j

Predict Xmiss
j using the trained regression on Xmiss

−j
3 Cycling through variables

⇒ With continuous variables and a regression/variable: N (µ,Σ)

⇒ Flexibility: different models for each variable

> library(mice)
> res.cm <- mice(don, m=1)
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Other single imputation methods

• k-nearest neighbor (class, FNN)
• random forest (missForest, Stekhoven & Bühlmann, 2011)
• ...

⇒ van Buuren: http://www.stefvanbuuren.nl/mi/Software.html
⇒ R task View: Official Statistics & Survey Methodology

⇒ Imputation based on PCA became famous with the Netflix
challenge!
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

PCA (complete)
Find the subspace that best represents the data

Figure: What’s this?

⇒ Best approximation with projection
⇒ Best representation of the variability
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PCA

⇒ Geometrical point of view: minimize the reconstruction error

Approximation of X of low rank (S < p):

‖Xn×p − X̂n×p‖2 SVD: X̂PCA = Un×SΛ
1
2
S×SV′

p×S = Fn×SV′
p×S

F = UΛ
1
2 principal components - scores

V principal axes - loadings

⇒ Model point of view: fixed effect model (Caussinus, 1986)

Xn×p = X̃n×p + εn×p

xij =
∑S

s=1
√

dsqisrjs + εij εij ∼ N (0, σ2)

Maximum likelihood estimates: least squares estimates
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Imputation with PCA

⇒ PCA: least squares

‖Xn×p −Un×SΛ
1
2
S×SV′

p×S‖2

⇒ PCA with missing values: weighted least squares

‖Wn×p ∗ (Xn×p −Un×SΛ
1
2
S×SV′

p×S)‖2

with wij = 0 if xij is missing, wij = 1 otherwise

Many algorithms: weighted alternating least squares (Gabriel &
Zamir, 1979); iterative PCA (Kiers, 1997)
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Iterative PCA
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Initialization ` = 0: X0 (mean imputation)
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Missing values imputed with the model matrix X̂` = U`Λ1/2`V`′
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The new imputed dataset is X` = W ∗ X + (1−W) ∗ X̂`
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Iterative PCA
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PCA on the completed data set → (U`,Λ`,V`)
Missing values imputed with the model matrix X̂` = U`Λ1/2`V`′
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Iterative PCA

1 initialization ` = 0: X0 (mean imputation)

2 step `:
(a) PCA on the completed data set → (U`,Λ`,V`);

S dimensions are kept
(b) missing values imputed with X̂` = U`Λ1/2`V`′;

the new imputed dataset is X` = W ∗ X + (1−W) ∗ X̂`

(c) means (and standard deviations) are updated

3 steps of estimation and imputation are repeated

⇒ EM algorithm of the fixed effect model

⇒ Imputation (matrix completion framework, Netflix)

⇒ Reduction of the variability (imputation by UΛ1/2V′)
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Overfitting
X41×6 = F41×2V′2×6 +N (0, 0.5)

⇒ 50% of NA
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⇒ fitting error is low: ||W ∗ (X− X̂)||2 = 0.48
⇒ prediction error is high: ||(1−W) ∗ (X− X̂)||2 = 5.58
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Overfitting

Overfitting when:
• many parameters / the number of observed values (the
number of dimensions S and of missing values are important)

• data are very noisy
⇒ Trust too much the relationship between variables

Remarks:
• missing values: special case of small data set
• iterative PCA: prediction method

Solution:
⇒ Shrinkage methods

31 / 81



Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Regularized iterative PCA (Josse et al., 2009)
⇒ Initialization - estimation step - imputation step
The imputation step:

x̂PCAij =
S∑

s=1

√
λsuisvjs

is replaced by a "shrunk" imputation step:

x̂ rPCAij =
S∑

s=1

(
λs − σ̂2

λs

)√
λsuisvjs =

S∑
s=1

(√
λs −

σ̂2
√
λs

)
uisvjs

σ̂2 = RSS
ddl =

n
∑q

s=S+1 λs

np − p − nS − pS + S2 + S (Xn×p; Un×S ; Vp×S)

Between hard/soft thresholding (Mazumder, Hastie & Tibshirani, 2010)
σ2 small → regularized PCA ≈ PCA
σ2 large → mean imputation
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Properties of the imputation

• Good imputation quality when the structure is strong
(imputation using similarities between individuals and
relationship between variables)

• Competitive with random forests
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Imputation with PCA in practice
⇒ Step 1: Estimation of the number of dimensions
(Cross Validation, Bro, 2008; GCV, Josse & Husson, 2011)
> library(missMDA)
> nb <- estim_ncpPCA(don,method.cv="Kfold")
> nb$ncp #2
> plot(0:5,nb$criterion,xlab="nb dim", ylab="MSEP")
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Imputation with PCA in practice

⇒ Step 2: Imputation of the missing values
> res.comp <- imputePCA(don,ncp=2)
> res.comp$completeObs[1:3,]

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v
0601 87 15.60 18.50 20.47 4 4.00 8.00 0.69 -1.71 -0.69 84
0602 82 18.51 20.88 21.81 5 5.00 7.00 -4.33 -4.00 -3.00 87
0603 92 15.30 17.60 19.50 2 3.98 3.81 2.95 1.97 0.52 82
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Cherry on the cake: PCA on incomplete data!
⇒ visualization of the incomplete data: a crucial step
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> imp <- cbind.data.frame(res.comp$completeObs,ozone[,12])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca$ind$coord #scores (principal components)
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An ecological data set

Glopnet data: 2494 species described by 6 quantitative variables
• LMA (leaf mass per area)
• LL (leaf lifespan)
• Amass (photosynthetic assimilation)
• Nmass (leaf nitrogen),
• Pmass (leaf phosphorus)
• Rmass (dark respiration rate)

and 1 categorical variable: the biome

Wright IJ, et al. (2004). The worldwide leaf economics spectrum.
Nature, 428:821.
www.nature.com/nature/journal/v428/n6985/extref/nature02403-s2.xls
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An ecological data set
> sum(is.na(don))/(nrow(don)*ncol(don)) # 53% of missing values
[1] 0.5338145
> dim(na.omit(don)) ## Delete species with missing values
[1] 72 6 ## only 72 remaining species!

> library(VIM)
> aggr(don,numbers=TRUE,sortVar=TRUE)
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0.2326
0.1985
0.1359
0.0714
0.0589
0.0573
0.0525
0.0397
0.0289
0.0180
0.0180
0.0152
0.0124
0.0124
0.0120
0.0080
0.0056
0.0052
0.0036
0.0028
0.0024
0.0024
0.0024
0.0020
0.0004
0.0004
0.0004
0.0004
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

An ecological data set
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MCA graph of the categories

Dim 1 (33.67%)

D
im

 2
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)

LL_m

LL_o

LMA_m

LMA_o

Nmass_m

Nmass_o

Pmass_m

Pmass_o

Amass_m

Amass_oRmass_m
Rmass_o

> mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))
> mis.ind[is.na(don)] <- "m"
> dimnames(mis.ind) <- dimnames(don)
> library(FactoMineR)
> resMCA <- MCA(mis.ind)
> plot(resMCA,invis="ind",title="MCA graph of the categories")
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Percentage of inertia if the variables are independent
Number of variables

nbind 4 5 6 7 8 9 10 11 12 13 14 15 16
5 96.5 93.1 90.2 87.6 85.5 83.4 81.9 80.7 79.4 78.1 77.4 76.6 75.5
6 93.3 88.6 84.8 81.5 79.1 76.9 75.1 73.2 72.2 70.8 69.8 68.7 68.0
7 90.5 84.9 80.9 77.4 74.4 72.0 70.1 68.3 67.0 65.3 64.3 63.2 62.2
8 88.1 82.3 77.2 73.8 70.7 68.2 66.1 64.0 62.8 61.2 60.0 59.0 58.0
9 86.1 79.5 74.8 70.7 67.4 65.1 62.9 61.1 59.4 57.9 56.5 55.4 54.3
10 84.5 77.5 72.3 68.2 65.0 62.4 60.1 58.3 56.5 55.1 53.7 52.5 51.5
11 82.8 75.7 70.3 66.3 62.9 60.1 58.0 56.0 54.4 52.7 51.3 50.1 49.2
12 81.5 74.0 68.6 64.4 61.2 58.3 55.8 54.0 52.4 50.9 49.3 48.2 47.2
13 80.0 72.5 67.2 62.9 59.4 56.7 54.4 52.2 50.5 48.9 47.7 46.6 45.4
14 79.0 71.5 65.7 61.5 58.1 55.1 52.8 50.8 49.0 47.5 46.2 45.0 44.0
15 78.1 70.3 64.6 60.3 57.0 53.9 51.5 49.4 47.8 46.1 44.9 43.6 42.5
16 77.3 69.4 63.5 59.2 55.6 52.9 50.3 48.3 46.6 45.2 43.6 42.4 41.4
17 76.5 68.4 62.6 58.2 54.7 51.8 49.3 47.1 45.5 44.0 42.6 41.4 40.3
18 75.5 67.6 61.8 57.1 53.7 50.8 48.4 46.3 44.6 43.0 41.6 40.4 39.3
19 75.1 67.0 60.9 56.5 52.8 49.9 47.4 45.5 43.7 42.1 40.7 39.6 38.4
20 74.1 66.1 60.1 55.6 52.1 49.1 46.6 44.7 42.9 41.3 39.8 38.7 37.5
25 72.0 63.3 57.1 52.5 48.9 46.0 43.4 41.4 39.6 38.1 36.7 35.5 34.5
30 69.8 61.1 55.1 50.3 46.7 43.6 41.1 39.1 37.3 35.7 34.4 33.2 32.1
35 68.5 59.6 53.3 48.6 44.9 41.9 39.5 37.4 35.6 34.0 32.7 31.6 30.4
40 67.5 58.3 52.0 47.3 43.4 40.5 38.0 36.0 34.1 32.7 31.3 30.1 29.1
45 66.4 57.1 50.8 46.1 42.4 39.3 36.9 34.8 33.1 31.5 30.2 29.0 27.9
50 65.6 56.3 49.9 45.2 41.4 38.4 35.9 33.9 32.1 30.5 29.2 28.1 27.0
100 60.9 51.4 44.9 40.0 36.3 33.3 31.0 28.9 27.2 25.8 24.5 23.3 22.3
2500 35.6

Table: 95th percentile of the percentage of inertia explained by the first
component of 10,000 MCAs performed on tables made up of independent
variables with 2 categories. 40 / 81



Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Percentage of inertia if the variables are independent
Number of variables

nbind 17 18 19 20 25 30 35 40 50 75 100 150 200
5 74.9 74.2 73.5 72.8 70.7 68.8 67.4 66.4 64.7 62.0 60.5 58.5 57.4
6 67.0 66.3 65.6 64.9 62.3 60.4 58.9 57.6 55.8 52.9 51.0 49.0 47.8
7 61.3 60.7 59.7 59.1 56.4 54.3 52.6 51.4 49.5 46.4 44.6 42.4 41.2
8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 41.6 39.8 37.6 36.4
9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 36.1 34.0 32.7
10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8
11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5
12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5
13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9
14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4
15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2
16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1
17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2
18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3
19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5
20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9
25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2
30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5
35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1
40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2
45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4
50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7
100 21.5 20.7 19.9 19.3 16.7 14.9 13.6 12.5 11.0 8.9 7.7 6.4 5.7

Table: 95th percentile of the percentage of inertia explained by the first
component of 10,000 MCAs performed on tables made up of independent
variables with 2 categories.
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

An ecological data set
What about mean imputation?
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

An ecological data set
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Variables factor map (PCA)
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D
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LL

LMA

Nmass
Pmass

Amass

Rmass

> library(missMDA)
> nb <- estim_ncpPCA(don,method.cv="Kfold",nbsim=100)
> res.comp <- imputePCA(don,ncp=2)
> imp <- cbind.data.frame(res.comp$completeObs,tab.init[,1:4])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca$ind$coord #scores (principal components)
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Outline

1 Introduction

2 Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Single imputation based on MCA for categorical data

Survey data

PCA on an indicator matrix X with specific weights DΣ

xik

I1 Ik IK

J

J

J

IJ

X = DΣ =

I1

Ik

IK

............
............

............
............

0

0

1 0 0 1 0 0 1 ... 0 1
1 0 0 1 0 1 0 ... NA NA
NA NA NA 0 1 0 0 ... 0 1
1 0 0 1 0 0 1 ... 0 1

0 0 1 NA NA 0 ... 0 1
1 0 0 1 0 0 1 ... 0 1
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Regularized iterative MCA (Josse et al., 2012)

• Initialization: imputation of the indicator matrix (proportion)
• Iterate until convergence

1 Estimation of F`,V`: MCA on the completed indicator matrix
2 Imputation of the missing values with the model matrix
3 Column margins are updated

V1 V2 V3 … V14 V1_a V1_b V1_c V2_e V2_f V3_g V3_h …
ind 1 a NA g … u ind 1 1 0 0 0.71 0.29 1 0 …
ind 2 NA f g u ind 2 0.12 0.29 0.59 0 1 1 0 …
ind 3 a e h v ind 3 1 0 0 1 0 0 1 …
ind 4 a e h v ind 4 1 0 0 1 0 0 1 …
ind 5 b f h u ind 5 0 1 0 0 1 0 1 …
ind 6 c f h u ind 6 0 0 1 0 1 0 1 …
ind 7 c f NA v ind 7 0 0 1 0 1 0.37 0.63 …

… … … … … … … … … … … … … …
ind  1232 c f h v ind 1232 0 0 1 0 1 0 1 …

⇒ Imputed values can be seen as degree of membership
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

A real example
• 1232 respondents, 14 questions, 35 categories, 9% of missing
values concerning 42% of respondents
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

A real example
• 1232 respondents, 14 questions, 35 categories, 9% of missing
values concerning 42% of respondents
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Outline

1 Introduction

2 Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Mixed variables

⇒ Joint modeling:
• General location model (Schafer, 1997) =⇒ pb when many
categories

• Transform the categorical variables into dummy variables and
deal as continuous variables (Amelia)

• Latent class models (Vermunt) – nonparametric Bayesian
models (work in progress, Dunson, Reiter, Duke University)

⇒ Conditional modeling: linear, logistic, multinomial logit models
(mice)

⇒ Random forests (Stekhoven & Bühlmann, 2012, missForest)
⇒ Principal components method (Audigier, Husson & Josse, 2014,
missMDA)
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Introduction SI for continuous var. SI for categorical var. SI for mixed var. Multiple imputation

Iterative Random Forests imputation

1 Initial imputation: mean imputation - random category
Sort the variables according to the amount of missing values

2 Fit a RF Xobs
j on variables Xobs

−j and then predict Xmiss
j

3 Cycling through variables until a stopping criterion is met

⇒ Properties:
• Non-linear relations, complex interactions
• n << p
• out-of-bag error rates: approximation of the imputation error

⇒ Outperforms k-nn and mice
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Principal component method for mixed data (complete)
Factorial Analysis on Mixed Data (Escofier, 1979), PCAMIX (Kiers, 1991)

Categorical
variables

Continuous
variables

0 1 0 1 0

centring &
scaling

I1I2 Ik

division by         
and centring

√
I/Ik

0 1 0 1 0

0 1 0 0 1

51   100   190
70     96   196

38     69   166

0 1
1 0

1 0

1 0 0
0 1 0

0 1 0

Indicator matrix

Matrix which balances the 

influence of each variable

A PCA is performed on the weighted matrix
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Properties of the method

• The distance between individuals is:

d2(i , l) =
Kcont∑
k=1

(xik − xlk)2 +
Q∑

q=1

Kq∑
k=1

1
Ikq

(xiq − xlq)2

• The principal component Fs maximises:

Kcont∑
k=1

r2(Fs , vk) +
Qcat∑
q=1

η2(Fs , vq)
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Iterative FAMD algorithm

1 Initialization: imputation mean (continuous) and proportion (dummy)

2 Iterate until convergence

(a) estimation: FAMD on the completed data ⇒ U,Λ,V
(b) imputation of the missing values with the model matrix
(c) means, standard deviations and column margins are updated

age weight size  alcohol sex snore tobacco
NA 100     190         NA M      yes no
70        96     186  1-2 gl/d     M      NA <=1
NA 104     194          No    W       no          NA
62        68     165  1-2 gl/d     M       no         <=1

age weight size  alcohol sex snore tobacco
51 100     190  1-2 gl/d M      yes no
70        96     186  1-2 gl/d     M      no <=1
48 104     194          No    W        no         <=1
62        68     165  1-2 gl/d     M       no         <=1

51 100  190 0.2 0.7 0.1 1 0   0   1   1   0   0
70  96  186   0   1   0  1 0 0.8 0.2 0   1   0
48 104  194   1   0   0  0 1   1   0 0.1 0.8 0.1
62  68  165   0   1   0  1 0   1   0   0   1   0

NA 100  190 NA  NA NA 1 0   0   1   1   0   0
70  96  186   0   1   0  1 0 NA  NA 0   1   0
NA 104  194   1   0   0  0 1   1   0 NA  NA NA
62  68  165   0   1   0  1 0   1   0   0   1   0

imputeAFDM

⇒ Imputed values can be seen as degrees of membership
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Iterative FAMD

⇒ Properties:

• Imputation based on scores and loadings ⇒ similarities
between individuals and relationships between continuous and
categorical variables

• Linear relationships
• Compared to a PCA on the (unweighted) indicator matrix,
small categories are better imputed

• The number of dimensions is a tuning parameter
• Good performances compared to the method based on
random forests, especially for categorical variables
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Simulations

• Simulation pattern
• 2 independent variables are drawn from a normal distribution
• 1 variable is replicated 4 times, the other 8 ⇒ 2 dimensions
• Random noise is added
• Half of the variables in each dimension are split in 3 clusters
• 10%, 20% or 30% of missing values are chosen at random

⇒ Data are constructed (expected) to be in 4 dimensions

• Criterion
• for continuous data:

N2RMSE =

√√√√√ ∑
i∈missing

mean
((

X true
i − X imp

i
)2
)

var (X true
i )

• for categorical data: proportion of falsely classified entries
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Simulations

Imputation using continuous data only

Imputation using categorical data only

Imputation using both continuous and categorical data
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imputation on categorical data
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Simulations

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

 Error on continuous variables
 

Nb of dimensions

N
2R

M
S

E

10%
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2 4 6 8 10
0.

1
0.

2
0.

3
0.

4

Error on the qualitative variables
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P
F

C

10%
20%
30%

⇒ The error on the estimation of the number of dimensions has
not an important impact on the imputation error ... if the
estimation is not too bad
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Comparison with random forest on real data sets
Imputations obtained with random forest & iterative algorithm
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Comparison with random forest

Compared to random forest, imputations are quite similar

Imputations are slightly better:
• for categorical variables
• especially for rare categories

and imputations are worse:
• when there are non-linear relationships between continuous
variables

• when there are interactions
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Mixed imputation in practice

> library(missMDA)
> imputeFAMD(mydata,ncp=2)

> library(missForest)
> missForest(mydata)

> library(mice)
> mice(mydata)
> mice(mydata, defaultMethod = "rf") ## mice with random forests
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Outline

1 Introduction

2 Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation
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Muliple Imputation uses
Number of publications (log) on multiple imputation during the
period 1977-2010

Source: S. Van Buuren webpage
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Multiple imputation

Single imputation: a single value can’t reflect the uncertainty of
prediction ⇒ underestimate the standard errors

1 Generating M imputed data sets
(F̂ û′)ij (F̂ û′)1ij + ε

1

ij (F̂ û′)2ij + ε
2

ij
(F̂ û′)3ij + ε

3

ij (F̂ û′)Bij + ε
B
ij

2 Performing the analysis on each imputed data set
3 Combining: variance = within + between imputation variance

β̂ = 1
M
∑M

m=1 β̂m

T = 1
M
∑

m V̂ar
(
β̂m
)

+
(
1 + 1

M

)
1

M−1
∑

m

(
β̂m − β̂

)2
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Multiple imputation: bivariate case

1 Generating M imputed data sets
First idea: several stochastic regression
for m = 1, ...,M, draw yi from the predictive N (xi β̂, σ̂2)

2 Performing the analysis on each imputed data set
3 Combining: variance = within + between imputation variance

M = 1 M = 50
µy = 0 0.01 0.01
σy = 1 0.99 0.99
ρ = 0.6 0.59 0.59

CIµy95% 70.8 81.8

⇒ Variability of the parameters is missing: "improper" imputation
⇒ Prediction variance = estimation variance plus noise
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Multiple imputation: bivariate case

⇒ Proper multiple imputation with yi = xiβ + εi

1 Variability of the parameters, M plausible: (β̂)1, ..., (β̂)M

⇒ Bootstrap
⇒ Posterior distribution: Bayesian regression

2 Noise: for m = 1, ...,M, missing values ym
i are imputed by

drawing from the predictive distribution N (xi β̂m, (σ̂2)m)

Improper Proper
CIµy95% 0.818 0.935
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Joint modeling
⇒ Hypothesis xi . ∼ N (µ,Σ)
Algorithm:

1 Bootstrap rows: X1, ... , XM

EM algorithm: (µ̂1, Σ̂1), ... , (µ̂M , Σ̂M)
2 Imputation: xm

ij drawn from N
(
µ̂m, Σ̂m)

Easy to parallelized
Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell
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Conditional modeling
⇒ Hypothesis: one model/variable
Algorithm:

1 Initial imputation: mean imputation
2 For a variable j

2.1 (β−j , σ−j) drawn from a Bootstrap or a posterior distribution
2.2 Imputation: stochastic regression xij drawn from
N
(
X−jβ−j , σ−j

)
3 Cycling through variables
4 Repeat M times steps 2 and 3

Implemented in mice (website)

“There is no clear-cut method for determining
whether the MICE algorithm has converged” Stef van Buuren
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Joint / Conditional modeling

⇒ Conditional modeling takes the lead?

• Flexible: one model/variable. Easy to deal with interactions
and variables of different nature (binary, ordinal, categorical...)

• Many statistical models are conditional models!
• Appears to work quite well in practice

⇒ Drawbacks: one model/variable... tedious...

⇒ What to do with high correlation or when n < p?

• JM shrinks the covariance Σ + kI (selection of k?)
• CM: ridge regression or predictors selection/variable ⇒ a lot
of tuning ... not so easy ...
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Multiple imputation with PCA and Bootstrap

xij = x̃ij + εij , εij ∼ N (0, σ2)

=
S∑

s=1

√
λsuisvjs + εij

1 Variability of the parameters, M plausible: (x̂ij)1, ..., (x̂ij)M
Bootstrap residuals: X1 = X̂ + ε1, ...,XM = X̂ + εM

Iterative PCA: X̂1 = U1Λ1V1, ..., X̂M = UMΛMVM

2 Noise: for m = 1, ...,M, missing values xm
ij are imputed by

drawing from the predictive distribution N (x̂m
ij , σ̂

2)

Implemented in missMDA (website)

François Husson Julie Josse
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Joint, conditional and PCA

⇒ Good estimates of the parameters and their variance from an
incomplete data (coverage close to 0.95)
The variability due to missing values is well taken into account

Amelia & mice have difficulties with high correlations or n < p
missMDA does not but requires a tuning parameter: number of dim.

Amelia & missMDA are based on linear relationships
mice is more flexible (one model per variable)
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Multiple imputation in practice

⇒ Step 1: Generate M imputed data sets

> library(Amelia)
> res.amelia <- amelia(don,m=100) ## in combination with zelig

> library(mice)
> res.mice <- mice(don,m=100,defaultMethod="norm.boot")

> library(missMDA)
> res.MIPCA <- MIPCA(don,ncp=2,B=100)
> res.MIPCA$resMI
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Multiple imputation in practice
⇒ Step 2: visualization
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> library(Amelia)
> res.amelia <- amelia(don,m=100)
> compare.density(res.amelia, var="T12")
> overimpute(res.amelia, var="maxO3")

function stripplot in mice
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Multiple imputation in practice
⇒ Step 2: visualization
⇒ Individuals position (and variables) with other predictions

Supplementary 
projectionPCA

Regularized iterative PCA
⇒ reference configuration
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PCA representation
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> imp <- cbind.data.frame(res.comp$completeObs,ozone[,12])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca$ind$coord #scores (principal components)
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Multiple imputation in practice

⇒ Step 2: visualization
> res.MIPCA <- MIPCA(don,ncp=2)
> plot(res.MIPCA,choice= "ind.supp"); plot(res.MIPCA,choice= "var ")
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Multiple imputation in practice

⇒ Step 3. Regression on each table and pool the results

β̂ = 1
M
∑M

m=1 β̂m

T = 1
M
∑

m V̂ar
(
β̂m
)

+
(
1 + 1

M

)
1

M−1
∑

m

(
β̂m − β̂

)2

> library(mice)
> imp.mice <- mice(don,m=100,defaultMethod="norm")
> lm.mice.out <- with(imp.mice, lm(maxO3 ~ T9+T12+T15+Ne9+...+Vx15+maxO3v))
> pool.mice <- pool(lm.mice.out)
> summary(pool.mice)

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 19.31 16.30 1.18 50.48 0.24 -13.43 52.05 NA 0.46 0.44
T9 -0.88 2.25 -0.39 26.43 0.70 -5.50 3.75 37 0.71 0.69
T12 3.29 2.38 1.38 27.54 0.18 -1.59 8.18 33 0.70 0.68
....
Vx15 0.23 1.33 0.17 39.00 0.87 -2.47 2.93 21 0.57 0.55
maxO3v 0.36 0.10 3.65 46.03 0.00 0.16 0.56 12 0.50 0.48
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Remarks

⇒ MI theory: good theory for regression parameters. Others?

⇒ Imputation model as complex as the analysis model
(interaction)

⇒ Some practical issues:
• Imputation not in agreement (X and X 2): missing passive
• Imputation out of range?
• Problems of logical bounds (> 0) ⇒ truncation?
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To conclude

Take home message:
• “The idea of imputation is both seductive and dangerous. It is seductive

because it can lull the user into the pleasurable state of believing that the data
are complete after all, and it is dangerous because it lumps together situations
where the problem is sufficiently minor that it can be legitimately handled in
this way and situations where standard estimators applied to the real and
imputed data have substantial biases.” (Dempster and Rubin, 1983)

• Advanced methods are available to estimate parameters and
their variance (taking into account the variability due to
missing values)

• Multiple imputation is an appealing method .... but ... how
can we do with big data?

• Still an active area of research
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Ressources
⇒ Softwares:

• van Buuren webpage:
http://www.stefvanbuuren.nl/mi/Software.html

• R task View: Official Statistics & Survey Methodology
⇒ Books:

• van Buuren (2012). Flexible Imputation of Missing Data. Chapman
& Hall/CRC

• Carpenter & Kenward (2013). Multiple Imputation and its
Application. Wiley

• G. Molenberghs, G. Fitzmaurice, M.G. Kenward, A. Tsiatis & G.
Verbeke (nov 2014). Handbook of Missing Data. Chapman &
Hall/CRC

⇒ J.L. Schafer & J.W. Graham, 2002. Missing Data: Our View of the
State of the Art. Psychological Methods, 7 147-177
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Contributors on the topic of multiple imputation

• J. Honaker - G. King - M. Blackwell (Harvard): Amelia
• S. van Buuren (Utrecht): mice
• F. Husson - J. Josse (Rennes): missMDA
• A. Gelman - J. Hill - Y. Su (Colombia): mi
• J. Reiter (Duke): NPBayesImpute Non-Parametric Bayesian
Multiple Imputation for Categorical Data

• J. Bartlett - J. Carpenter - M. Kenward (UCL): smcfcs
Substantive model compatible FCS multiple imputation

• H. Goldstein (Bristol) : realcom for multi-level data
• J.K. Vermunt (Tilburg): poLCA latent class models
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Conference on missing data
Thank you for your attention

http://missdata2015.agrocampus-ouest.fr/
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