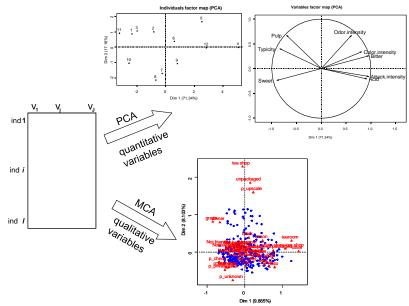
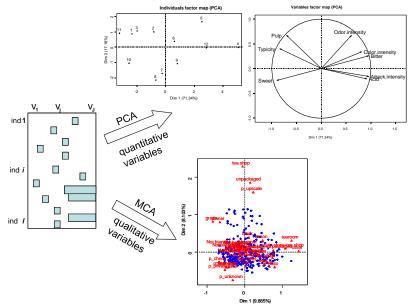
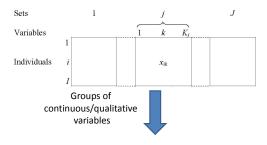
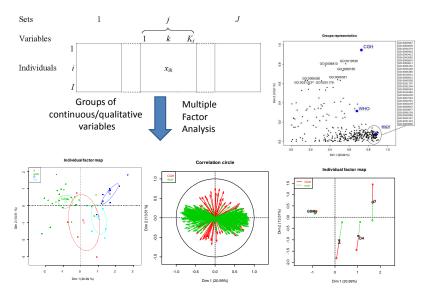
Handling missing values with a special focus on the use of principal components methods

François Husson & Julie Josse Applied mathematics department, Agrocampus Ouest, Rennes, France









- Exploratory multivariate data analysis (principal components methods to visualize data)
- Missing values
- Fields of application: Bio-sciences; sensory analysis
- Books (*Exploratory multivariate analysis with R*, *R for Statistics* and 3 books in French)
- R packages (FactoMineR missMDA SensoMineR)
- A MOOC on exploratory multivariate data analysis

SI for mixed var

Multiple imputation

Outline

1 Introduction

- ② Single imputation for continuous variables
- Single imputation for categorical variables
- ④ Single imputation for mixed variables
- **5** Multiple imputation

Introduction

Missing values

"The best thing to do with missing values is not to have any"

Gertrude Mary Cox

Missing values are ubiquitous:

- no answer in a questionnaire
- data that are lost or destroyed
- machines that fail
- plants damaged

Introduction

Missing values

"The best thing to do with missing values is not to have any"

Gertrude Mary Cox

Missing values are ubiquitous:

- no answer in a questionnaire
- data that are lost or destroyed
- machines that fail
- plants damaged

• ...

Still an issue in the big data area

A real dataset

	03	Т9	T12	T15	Ne9	Ne12	Ne15	V×9	Vx12	V×15	O3v
0601	NA	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	17	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
•	•		•	•	•	•	•				
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Introduction

SI for categorical var.

SI for mixed var

Multiple imputation

Some references

Schafer (1997),

Joseph L. Schafer

Little & Rubin (1987, 2002)

Roderick Little

Donald Rubin

Suggested reading: chap 25 of Gelman & Hill (2006)

Andrew Gelman

Jennifer L. Hill

Missing values problematic

A very simple way: deletion (default 1m function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

Missing values problematic

A very simple way: deletion (default 1m function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
 - MCAR: probability does not depend on any values
 - MAR: probability may depend on values on other variables
 - MNAR: probability depends on the value itself
 - (Ex: Income Age)

Missing values problematic

A very simple way: deletion (default 1m function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
 - MCAR: probability does not depend on any values
 - MAR: probability may depend on values on other variables
 - MNAR: probability depends on the value itself

(Ex: Income - Age)

 \Rightarrow Visualization of missing data

Count missing values

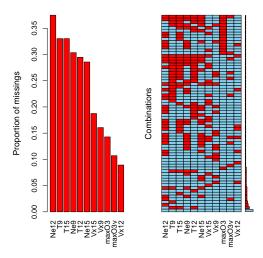
- > library(VIM)
- > res<-summary(aggr(don,prop=TRUE,combined=TRUE))\$combinations</pre>
- > res[rev(order(res[,2])),]

Variables	s sorted by			
number of	f missings:	Combinations	\mathtt{Count}	Percent
Variable	Count	0:0:0:0:0:0:0:0:0:0:0:0	13	11.6071429
Ne12	0.37500000	0:1:1:1:0:0:0:0:0:0:0:0	7	6.2500000
Т9	0.33035714	0:0:0:0:0:1:0:0:0:0:0	5	4.4642857
T15	0.33035714	0:1:0:0:0:0:0:0:0:0:0:0	4	3.5714286
Ne9	0.30357143	0:1:0:0:1:1:1:0:0:0:0	3	2.6785714
T12	0.29464286	0:0:1:0:0:0:0:0:0:0:0:0	3	2.6785714
Ne15	0.28571429	0:0:0:1:0:0:0:0:0:0:0	3	2.6785714
Vx15	0.18750000	0:0:0:0:1:1:1:0:0:0:0	3	2.6785714
Vx9	0.16071429	0:0:0:0:0:1:0:0:0:1:	3	2.6785714
max03	0.14285714	0:1:1:1:1:0:0:0:0:0:0	2	1.7857143
max03v	0.10714286	0:0:0:0:1:0:0:0:1:0	2	1.7857143
Vx12	0.08928571	0:0:0:0:0:0:1:1:0:0:0	2	1.7857143
		0:0:0:0:0:0:1:0:0:0:0	2	1.7857143

Introduction

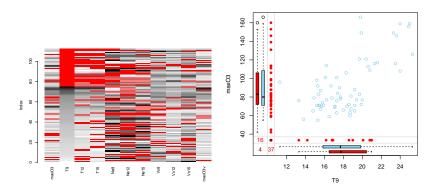
Multiple imputation

Pattern visualization



- > library(VIM)
- > aggr(don,only.miss=TRUE,sortVar=TRUE)

Visualization



- > library(VIM)
- > matrixplot(don,sortby=2)
- > marginplot(don[,c("T9","maxO3")])

Visualization with Multiple Correspondence Analysis

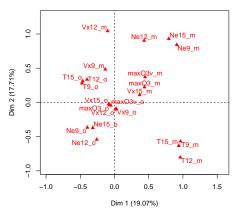
\Rightarrow Create the missingness matrix

```
> mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))
> mis.ind[is.na(don)]="m"
> dimnames(mis.ind)=dimnames(don)
```

```
> mis.ind
```

	max03	T9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	max03v
20010601	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"	"o"	"o"	"o"
20010602	"o"	"m"	"m"	"m"	"o"	"o"	"o"	"o"	"o"	"o"	"o"
20010603	"o"	"o"	"o"	"o"	"o"	"m"	"m"	"o"	"m"	"o"	"o"
20010604	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"m"	"o"	"o"	"o"
20010605	"o"	"m"	"o"	"o"	"m"	"m"	"m"	"o"	"o"	"o"	"o"
20010606	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"	"o"
20010607	"o"	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"
20010610	"o"	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"

Visualization with Multiple Correspondence Analysis



MCA graph of the categories

- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)</pre>
- > plot(resMCA,invis="ind",title="MCA graph of the categories")

Recommended approaches

 \Rightarrow Modify the method, the estimation process to deal with missing values

 \Rightarrow Imputation (multiple imputation) to get a completed data set on which you can perform any statistical method

Expectation - Maximization (Dempster et al., 1977)

Need the modification of the estimation process (not always easy!)

Rationale to get ML estimates on the observed values max L_{obs} through max of L_{comp} of $X = (X_{obs}, X_{miss})$. Augment the data to simplify the problem

E step (conditional expectation):

$$Q(heta, heta^\ell) = \int \ln(f(X| heta)) f(X_{miss}|X_{obs}, heta^\ell) dX_{miss}$$

M step (maximization):

$$heta^{\ell+1} = \operatorname{argmax}_{ heta} Q(heta, heta^\ell)$$

Result: when $\theta^{\ell+1} \max Q(\theta, \theta^{\ell})$ then $L(X_{obs}, \theta^{\ell+1}) \ge L(X_{obs}, \theta^{\ell})$

Maximum likelihood approach

Hypothesis
$$\mathbf{x}_{i.} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}
ight)$$

- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Maximum likelihood approach

```
Hypothesis \mathbf{x}_{i.} \sim \mathcal{N}\left( \boldsymbol{\mu}, \boldsymbol{\Sigma} 
ight)
```

- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)
- \Rightarrow Variances:
 - Supplemented EM (Meng, 1991)
 - Bootstrap approach:
 - Bootstrap rows: X¹, ... , X^B
 - EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1)$, ... , $(\hat{\mu}^B, \hat{\Sigma}^B)$

Maximum likelihood approach

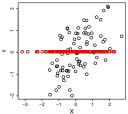
```
Hypothesis \mathbf{x}_{i.} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
```

- \Rightarrow Point estimates with EM:
- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)
- \Rightarrow Variances:
 - Supplemented EM (Meng, 1991)
 - Bootstrap approach:
 - Bootstrap rows: **X**¹, ... , **X**^B
 - EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1)$, ... , $(\hat{\mu}^B, \hat{\Sigma}^B)$

Issue: develop a specific method for each statistical method

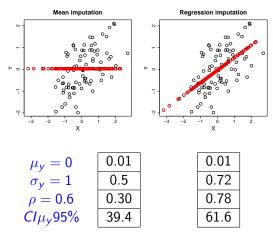
Introduction

Single imputation methods

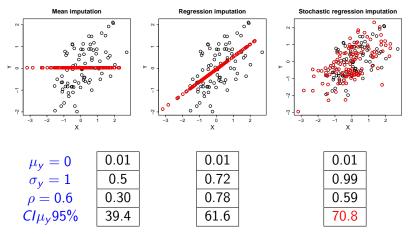


$$\begin{array}{c} \mu_y = 0 & \hline 0.01 \\ \sigma_y = 1 & 0.5 \\ \rho = 0.6 & 0.30 \\ C I \mu_y 95\% & 39.4 \end{array}$$

Single imputation methods



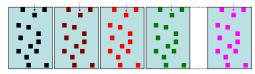
Single imputation methods



 \Rightarrow Standard errors of the parameters ($\hat{\sigma}_{\hat{\mu}_y}$) calculated from the imputed data set are underestimated

Multiple imputation (Rubin, 1987)

• Generate M plausible values for each missing value



- Perform the analysis on each imputed data set: $\hat{ heta}_m, \widehat{Var}\left(\hat{ heta}_m\right)$
- Combine the results: $\hat{\theta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_m$ $T = \frac{1}{M} \sum_{m=1}^{M} \widehat{Var} \left(\hat{\theta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\theta}_m - \hat{\theta} \right)^2$

 \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

A multiple imputation procedure requires a single imputation method

- 1 Single imputation based on normal distribution
- **2** Single imputation with PCA
- 3 Multiple imputation based on normal distribution
- **4** Multiple imputation with Bayesian PCA

Outline

1 Introduction

2 Single imputation for continuous variables

- Single imputation for categorical variables
- ④ Single imputation for mixed variables

5 Multiple imputation

Joint modeling

 \Rightarrow Hypothesis $\mathbf{x}_{i.} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}
ight)$

Bivariate case with missing values on Y (stochastic regression):

- Estimate β and σ
- Draw from the predictive $y_i \sim \mathcal{N}\left(x_i \hat{eta}, \hat{\sigma}^2\right)$

Extension to the multivariate case:

• Estimate μ and $oldsymbol{\Sigma}$ from an incomplete dataset with EM

• Draw from
$$\mathcal{N}\left(\hat{\mu}, \hat{\mathbf{\Sigma}}\right)$$

- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > rngseed(123)
- > imp <- imp.norm(pre,thetahat,don)</pre>

Conditional modeling

- \Rightarrow A model per variable
- Example with regression:
 - 1 Initial imputation: mean imputation
 - **2** Fit a stochastic regression \mathbf{X}_{j}^{obs} on the other variables \mathbf{X}_{-j}^{obs} Predict \mathbf{X}_{j}^{miss} using the trained regression on \mathbf{X}_{-j}^{miss}
 - 3 Cycling through variables

```
> library(mice)
```

> res.cm <- mice(don, m=1)</pre>

Conditional modeling

- \Rightarrow A model per variable
- Example with regression:
 - 1 Initial imputation: mean imputation
 - **2** Fit a stochastic regression \mathbf{X}_{j}^{obs} on the other variables \mathbf{X}_{-j}^{obs} Predict \mathbf{X}_{j}^{miss} using the trained regression on \mathbf{X}_{-j}^{miss}
 - **3** Cycling through variables
- \Rightarrow With continuous variables and a regression/variable: $\mathcal{N}(\mu, oldsymbol{\Sigma})$
- \Rightarrow Flexibility: different models for each variable
- > library(mice)
 > res.cm <- mice(don, m=1)</pre>

Other single imputation methods

- k-nearest neighbor (class, FNN)
- random forest (missForest, Stekhoven & Bühlmann, 2011)

• ...

⇒ van Buuren: http://www.stefvanbuuren.nl/mi/Software.html
⇒ R task View: Official Statistics & Survey Methodology

 \Rightarrow Imputation based on PCA became famous with the Netflix challenge!

Introduction

Multiple imputation

PCA (complete)

Find the subspace that best represents the data

Figure: What's this?

- \Rightarrow Best approximation with projection
- \Rightarrow Best representation of the variability

Multiple imputation

PCA (complete)

Find the subspace that best represents the data

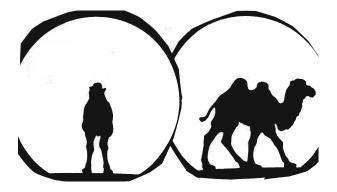


Figure: Camel or dromedary? source J.P. Fénelon

- \Rightarrow Best approximation with projection
- \Rightarrow Best representation of the variability

PCA

 \Rightarrow Geometrical point of view: minimize the reconstruction error

Approximation of **X** of low rank (S < p):

$$\|\mathbf{X}_{n\times p} - \hat{\mathbf{X}}_{n\times p}\|^2 \quad \text{SVD:} \quad \hat{\mathbf{X}}^{\text{PCA}} = \mathbf{U}_{n\times S} \mathbf{\Lambda}_{S\times S}^{\frac{1}{2}} \mathbf{V}_{p\times S}' = \mathbf{F}_{n\times S} \mathbf{V}_{p\times S}'$$

 $\mathbf{F} = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}}$ principal components - scores **V** principal axes - loadings

PCA

 \Rightarrow Geometrical point of view: minimize the reconstruction error

Approximation of **X** of low rank (S < p):

$$\|\mathbf{X}_{n\times p} - \hat{\mathbf{X}}_{n\times p}\|^2 \quad \text{SVD:} \quad \hat{\mathbf{X}}^{\text{PCA}} = \mathbf{U}_{n\times S} \mathbf{\Lambda}_{S\times S}^{\frac{1}{2}} \mathbf{V}_{p\times S}' = \mathbf{F}_{n\times S} \mathbf{V}_{p\times S}'$$

 $F=U\Lambda^{\frac{1}{2}}$ principal components - scores V principal axes - loadings

 \Rightarrow Model point of view: fixed effect model (Caussinus, 1986)

$$\begin{split} \mathbf{X}_{n \times p} &= \tilde{\mathbf{X}}_{n \times p} + \varepsilon_{n \times p} \\ x_{ij} &= \sum_{s=1}^{S} \sqrt{d_s} q_{is} r_{js} + \varepsilon_{ij} \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{split}$$

Maximum likelihood estimates: least squares estimates

Imputation with PCA

 \Rightarrow PCA: least squares

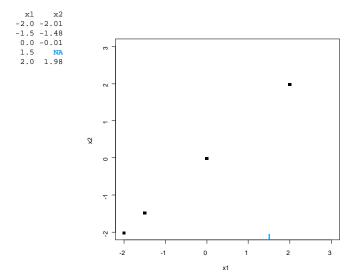
$$\|\mathbf{X}_{n\times p} - \mathbf{U}_{n\times S}\mathbf{\Lambda}_{S\times S}^{\frac{1}{2}}\mathbf{V}_{p\times S}'\|^{2}$$

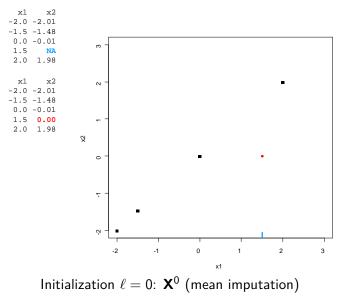
 \Rightarrow PCA with missing values: weighted least squares

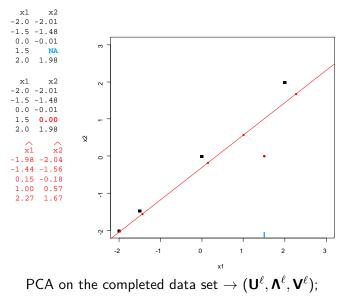
$$\|\mathbf{W}_{n\times p} * (\mathbf{X}_{n\times p} - \mathbf{U}_{n\times S} \mathbf{\Lambda}_{S\times S}^{\frac{1}{2}} \mathbf{V}_{p\times S}')\|^{2}$$

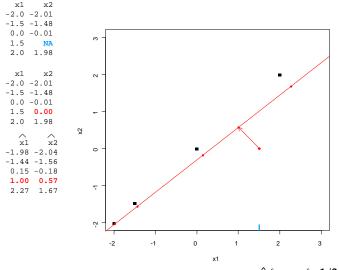
with $w_{ij} = 0$ if x_{ij} is missing, $w_{ij} = 1$ otherwise

Many algorithms: weighted alternating least squares (Gabriel & Zamir, 1979); iterative PCA (Kiers, 1997)

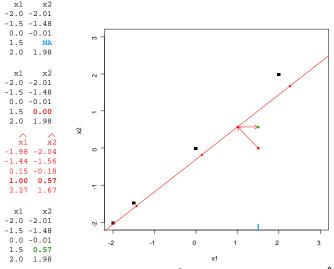




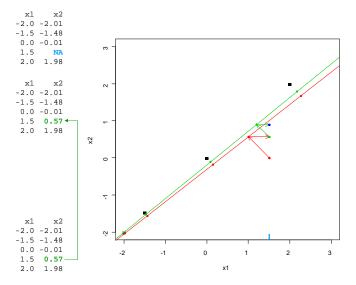


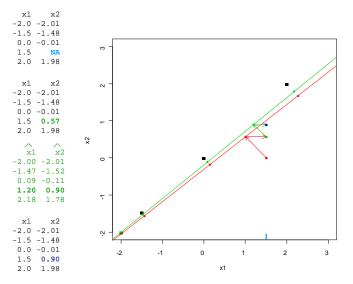


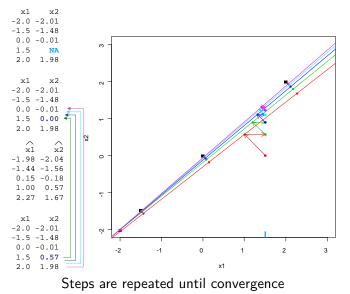
Missing values imputed with the model matrix $\hat{\bm{X}}^\ell = \bm{U}^\ell \bm{\Lambda}^{1/2^\ell} \bm{V}^{\ell\prime}$

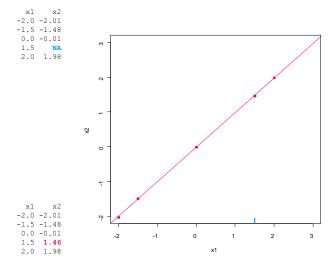


The new imputed dataset is $\textbf{X}^{\ell} = \textbf{W} \ast \textbf{X} + (1-\textbf{W}) \ast \hat{\textbf{X}}^{\ell}$









PCA on the completed data set $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell})$ Missing values imputed with the model matrix $\hat{X}^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \prime}$

- (1) initialization $\ell = 0$: **X**⁰ (mean imputation)
- **2** step ℓ :
 - (a) PCA on the completed data set \rightarrow ($\mathbf{U}^{\ell}, \mathbf{\Lambda}^{\ell}, \mathbf{V}^{\ell}$); *S* dimensions are kept
 - (b) missing values imputed with $\hat{\mathbf{X}}^{\ell} = \mathbf{U}^{\ell} \mathbf{\Lambda}^{1/2^{\ell}} \mathbf{V}^{\ell'}$; the new imputed dataset is $\mathbf{X}^{\ell} = \mathbf{W} * \mathbf{X} + (1 - \mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
- 3 steps of estimation and imputation are repeated

- (1) initialization $\ell = 0$: \mathbf{X}^0 (mean imputation)
- **2** step *ℓ*:
 - (a) PCA on the completed data set \rightarrow ($\mathbf{U}^{\ell}, \mathbf{\Lambda}^{\ell}, \mathbf{V}^{\ell}$); *S* dimensions are kept
 - (b) missing values imputed with $\hat{\mathbf{X}}^{\ell} = \mathbf{U}^{\ell} \mathbf{\Lambda}^{1/2^{\ell}} \mathbf{V}^{\ell \prime}$; the new imputed dataset is $\mathbf{X}^{\ell} = \mathbf{W} * \mathbf{X} + (1 - \mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
 - (c) means (and standard deviations) are updated
- 3 steps of estimation and imputation are repeated

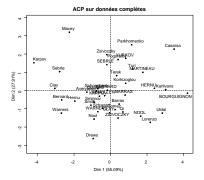
- (1) initialization $\ell = 0$: \mathbf{X}^0 (mean imputation)
- **2** step *ℓ*:
 - (a) PCA on the completed data set \rightarrow ($\mathbf{U}^{\ell}, \mathbf{\Lambda}^{\ell}, \mathbf{V}^{\ell}$); *S* dimensions are kept
 - (b) missing values imputed with $\hat{\mathbf{X}}^{\ell} = \mathbf{U}^{\ell} \mathbf{\Lambda}^{1/2^{\ell}} \mathbf{V}^{\ell \prime}$; the new imputed dataset is $\mathbf{X}^{\ell} = \mathbf{W} * \mathbf{X} + (1 - \mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
 - (c) means (and standard deviations) are updated
- 3 steps of estimation and imputation are repeated

- (1) initialization $\ell = 0$: \mathbf{X}^0 (mean imputation)
- **2** step *ℓ*:
 - (a) PCA on the completed data set \rightarrow ($\mathbf{U}^{\ell}, \mathbf{\Lambda}^{\ell}, \mathbf{V}^{\ell}$); *S* dimensions are kept
 - (b) missing values imputed with Â^ℓ = U^ℓΛ^{1/2^ℓ}V^ℓ; the new imputed dataset is X^ℓ = W * X + (1 W) * Â^ℓ
 (c) means (and standard deviations) are updated
- 3 steps of estimation and imputation are repeated
- \Rightarrow EM algorithm of the fixed effect model
- \Rightarrow Imputation (matrix completion framework, Netflix)
- \Rightarrow Reduction of the variability (imputation by $\textbf{U}\textbf{\Lambda}^{1/2}\textbf{V}')$

Multiple imputation

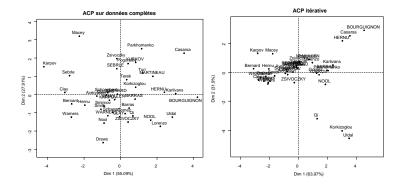
Overfitting

 $\mathbf{X}_{41\times 6} = \mathbf{F}_{41\times 2}\mathbf{V}_{2\times 6}' + \mathcal{N}(0, 0.5)$



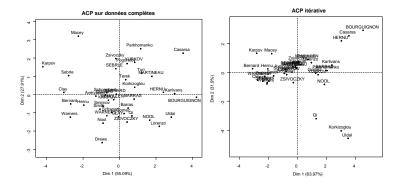
Overfitting

 $\textbf{X}_{41\times 6} = \textbf{F}_{41\times 2} \textbf{V}_{2\times 6}' + \mathcal{N}(0, 0.5) \quad \Rightarrow 50\% \text{ of NA}$



Overfitting

 $\textbf{X}_{41\times 6} = \textbf{F}_{41\times 2} \textbf{V}_{2\times 6}' + \mathcal{N}(0, 0.5) \quad \Rightarrow 50\% \text{ of NA}$



⇒ fitting error is low: $||\mathbf{W} * (\mathbf{X} - \hat{\mathbf{X}})||^2 = 0.48$ ⇒ prediction error is high: $||(1 - \mathbf{W}) * (\mathbf{X} - \hat{\mathbf{X}})||^2 = 5.58$

Overfitting

Overfitting when:

- many parameters / the number of observed values (the number of dimensions S and of missing values are important)
- data are very noisy
- \Rightarrow Trust too much the relationship between variables

Remarks:

- missing values: special case of small data set
- iterative PCA: prediction method

Solution: \Rightarrow Shrinkage methods

Regularized iterative PCA (Josse et al., 2009)

 \Rightarrow Initialization - estimation step - imputation step The imputation step:

$$\hat{x}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by a "shrunk" imputation step:

$$\hat{x}_{ij}^{\mathsf{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

Regularized iterative PCA (Josse et al., 2009)

 \Rightarrow Initialization - estimation step - imputation step The imputation step:

$$\hat{x}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by a "shrunk" imputation step:

$$\hat{x}_{ij}^{\mathsf{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

$$\hat{\sigma}^2 = \frac{RSS}{ddl} = \frac{n \sum_{s=S+1}^q \lambda_s}{np - p - nS - pS + S^2 + S} \qquad (\mathbf{X}_{n \times p}; \mathbf{U}_{n \times S}; \mathbf{V}_{p \times S})$$

Regularized iterative PCA (Josse et al., 2009)

 \Rightarrow Initialization - estimation step - imputation step The imputation step:

$$\hat{x}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by a "shrunk" imputation step:

$$\hat{x}_{ij}^{\mathsf{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

$$\hat{\sigma}^2 = \frac{RSS}{ddI} = \frac{n \sum_{s=S+1}^q \lambda_s}{np - p - nS - pS + S^2 + S} \qquad (\mathbf{X}_{n \times p}; \mathbf{U}_{n \times S}; \mathbf{V}_{p \times S})$$

Between hard/soft thresholding (Mazumder, Hastie & Tibshirani, 2010) σ^2 small \rightarrow regularized PCA \approx PCA σ^2 large \rightarrow mean imputation

Properties of the imputation

 Good imputation quality when the structure is strong (imputation using similarities between individuals and relationship between variables)

Competitive with random forests

Imputation with PCA in practice

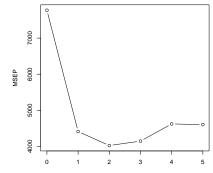
 \Rightarrow Step 1: Estimation of the number of dimensions (Cross Validation, Bro, 2008; GCV, Josse & Husson, 2011)

> library(missMDA)

```
> nb <- estim_ncpPCA(don,method.cv="Kfold")</pre>
```

> nb\$ncp #2

```
> plot(0:5,nb$criterion,xlab="nb dim", ylab="MSEP")
```



nb dim

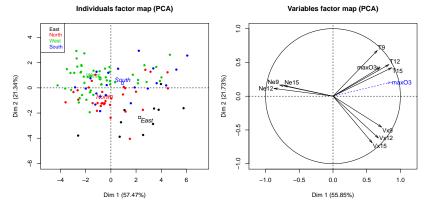
Imputation with PCA in practice

\Rightarrow Step 2: Imputation of the missing values

> rea	s.comp	<- imj	putePC	A(don,	ncp=2	2)					
> rea	<pre>> res.comp\$completeObs[1:3,]</pre>										
	max03	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	max03v
0601	87	15.60	18.50	20.47	4	4.00	8.00	0.69	-1.71	-0.69	84
0602	82	18.51	20.88	21.81	5	5.00	7.00	-4.33	-4.00	-3.00	87
0603	92	15.30	17.60	19.50	2	3.98	3.81	2.95	1.97	0.52	82

Cherry on the cake: PCA on incomplete data!

 \Rightarrow visualization of the incomplete data: a crucial step



- > imp <- cbind.data.frame(res.comp\$completeObs,ozone[,12])</pre>
- > res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)</pre>
- > plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
- > res.pca\$ind\$coord #scores (principal components)

Glopnet data: 2494 species described by 6 quantitative variables

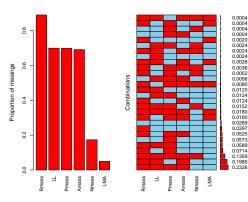
- LMA (leaf mass per area)
- LL (leaf lifespan)
- Amass (photosynthetic assimilation)
- Nmass (leaf nitrogen),
- Pmass (leaf phosphorus)
- Rmass (dark respiration rate)

and 1 categorical variable: the biome

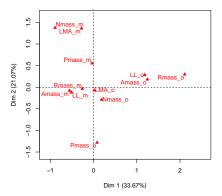
Wright IJ, et al. (2004). The worldwide leaf economics spectrum. *Nature*, 428:821. www.nature.com/nature/journal/v428/n6985/extref/nature02403-s2.xls

> sum(is.na(don))/(nrow(don)*ncol(don)) # 53% of missing values [1] 0.5338145 > dim(na.omit(don)) ## Delete species with missing values [1] 72 6 ## only 72 remaining species!

- > library(VIM)
- > aggr(don,numbers=TRUE,sortVar=TRUE)



MCA graph of the categories



- > mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))</pre>
- > mis.ind[is.na(don)] <- "m"</pre>
- > dimnames(mis.ind) <- dimnames(don)</pre>
- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)</pre>
- > plot(resMCA,invis="ind",title="MCA graph of the categories")

Percentage of inertia if the variables are independent

						Numb	per of va	riables					
nbind	4	5	6	7	8	9	10	11	12	13	14	15	16
5	96.5	93.1	90.2	87.6	85.5	83.4	81.9	80.7	79.4	78.1	77.4	76.6	75.5
6	93.3	88.6	84.8	81.5	79.1	76.9	75.1	73.2	72.2	70.8	69.8	68.7	68.0
7	90.5	84.9	80.9	77.4	74.4	72.0	70.1	68.3	67.0	65.3	64.3	63.2	62.2
8	88.1	82.3	77.2	73.8	70.7	68.2	66.1	64.0	62.8	61.2	60.0	59.0	58.0
9	86.1	79.5	74.8	70.7	67.4	65.1	62.9	61.1	59.4	57.9	56.5	55.4	54.3
10	84.5	77.5	72.3	68.2	65.0	62.4	60.1	58.3	56.5	55.1	53.7	52.5	51.5
11	82.8	75.7	70.3	66.3	62.9	60.1	58.0	56.0	54.4	52.7	51.3	50.1	49.2
12	81.5	74.0	68.6	64.4	61.2	58.3	55.8	54.0	52.4	50.9	49.3	48.2	47.2
13	80.0	72.5	67.2	62.9	59.4	56.7	54.4	52.2	50.5	48.9	47.7	46.6	45.4
14	79.0	71.5	65.7	61.5	58.1	55.1	52.8	50.8	49.0	47.5	46.2	45.0	44.0
15	78.1	70.3	64.6	60.3	57.0	53.9	51.5	49.4	47.8	46.1	44.9	43.6	42.5
16	77.3	69.4	63.5	59.2	55.6	52.9	50.3	48.3	46.6	45.2	43.6	42.4	41.4
17	76.5	68.4	62.6	58.2	54.7	51.8	49.3	47.1	45.5	44.0	42.6	41.4	40.3
18	75.5	67.6	61.8	57.1	53.7	50.8	48.4	46.3	44.6	43.0	41.6	40.4	39.3
19	75.1	67.0	60.9	56.5	52.8	49.9	47.4	45.5	43.7	42.1	40.7	39.6	38.4
20	74.1	66.1	60.1	55.6	52.1	49.1	46.6	44.7	42.9	41.3	39.8	38.7	37.5
25	72.0	63.3	57.1	52.5	48.9	46.0	43.4	41.4	39.6	38.1	36.7	35.5	34.5
30	69.8	61.1	55.1	50.3	46.7	43.6	41.1	39.1	37.3	35.7	34.4	33.2	32.1
35	68.5	59.6	53.3	48.6	44.9	41.9	39.5	37.4	35.6	34.0	32.7	31.6	30.4
40	67.5	58.3	52.0	47.3	43.4	40.5	38.0	36.0	34.1	32.7	31.3	30.1	29.1
45	66.4	57.1	50.8	46.1	42.4	39.3	36.9	34.8	33.1	31.5	30.2	29.0	27.9
50	65.6	56.3	49.9	45.2	41.4	38.4	35.9	33.9	32.1	30.5	29.2	28.1	27.0
100	60.9	51.4	44.9	40.0	36.3	33.3	31.0	28.9	27.2	25.8	24.5	23.3	22.3
2500			35.6										

Table: 95th percentile of the percentage of inertia explained by the first component of 10,000 MCAs performed on tables made up of independent variables with 2 categories.

Percentage of inertia if the variables are independent

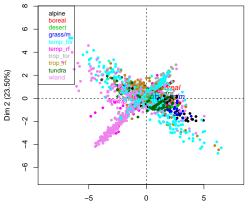
						Numb	per of va	riables					
nbind	17	18	19	20	25	30	35	40	50	75	100	150	200
5	74.9	74.2	73.5	72.8	70.7	68.8	67.4	66.4	64.7	62.0	60.5	58.5	57.4
6	67.0	66.3	65.6	64.9	62.3	60.4	58.9	57.6	55.8	52.9	51.0	49.0	47.8
7	61.3	60.7	59.7	59.1	56.4	54.3	52.6	51.4	49.5	46.4	44.6	42.4	41.2
8	57.0	56.2	55.4	54.5	51.8	49.7	47.8	46.7	44.6	41.6	39.8	37.6	36.4
9	53.6	52.5	51.8	51.2	48.1	45.9	44.4	42.9	41.0	38.0	36.1	34.0	32.7
10	50.6	49.8	49.0	48.3	45.2	42.9	41.4	40.1	38.0	35.0	33.2	31.0	29.8
11	48.1	47.2	46.5	45.8	42.8	40.6	39.0	37.7	35.6	32.6	30.8	28.7	27.5
12	46.2	45.2	44.4	43.8	40.7	38.5	36.9	35.5	33.5	30.5	28.8	26.7	25.5
13	44.4	43.4	42.8	41.9	39.0	36.8	35.1	33.9	31.8	28.8	27.1	25.0	23.9
14	42.9	42.0	41.3	40.4	37.4	35.2	33.6	32.3	30.4	27.4	25.7	23.6	22.4
15	41.6	40.7	39.8	39.1	36.2	34.0	32.4	31.1	29.0	26.0	24.3	22.4	21.2
16	40.4	39.5	38.7	37.9	35.0	32.8	31.1	29.8	27.9	24.9	23.2	21.2	20.1
17	39.4	38.5	37.6	36.9	33.8	31.7	30.1	28.8	26.8	23.9	22.2	20.3	19.2
18	38.3	37.4	36.7	35.8	32.9	30.7	29.1	27.8	25.9	22.9	21.3	19.4	18.3
19	37.4	36.5	35.8	34.9	32.0	29.9	28.3	27.0	25.1	22.2	20.5	18.6	17.5
20	36.7	35.8	34.9	34.2	31.3	29.1	27.5	26.2	24.3	21.4	19.8	18.0	16.9
25	33.5	32.5	31.8	31.1	28.1	26.0	24.5	23.3	21.4	18.6	17.0	15.2	14.2
30	31.2	30.3	29.5	28.8	26.0	23.9	22.3	21.1	19.3	16.6	15.1	13.4	12.5
35	29.5	28.6	27.9	27.1	24.3	22.2	20.7	19.6	17.8	15.2	13.7	12.1	11.1
40	28.1	27.3	26.5	25.8	23.0	21.0	19.5	18.4	16.6	14.1	12.7	11.1	10.2
45	27.0	26.1	25.4	24.7	21.9	20.0	18.5	17.4	15.7	13.2	11.8	10.3	9.4
50	26.1	25.3	24.6	23.8	21.1	19.1	17.7	16.6	14.9	12.5	11.1	9.6	8.7
100	21.5	20.7	19.9	19.3	16.7	14.9	13.6	12.5	11.0	8.9	7.7	6.4	5.7

Table: 95th percentile of the percentage of inertia explained by the first component of 10,000 MCAs performed on tables made up of independent variables with 2 categories.

Multiple imputation

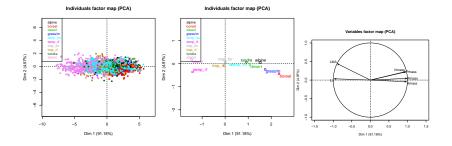
An ecological data set

What about mean imputation?



Individuals factor map (PCA)

Dim 1 (44.79%)



> library(missMDA)

- > nb <- estim_ncpPCA(don,method.cv="Kfold",nbsim=100)</pre>
- > res.comp <- imputePCA(don,ncp=2)</pre>
- > imp <- cbind.data.frame(res.comp\$completeObs,tab.init[,1:4])</pre>
- > res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)</pre>
- > plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
- > res.pca\$ind\$coord #scores (principal components)

SI for categorical var.

SI for mixed var

Multiple imputation

Outline

1 Introduction

② Single imputation for continuous variables

3 Single imputation for categorical variables

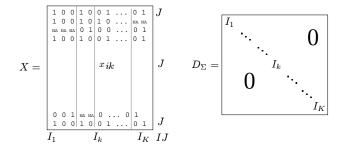
④ Single imputation for mixed variables

5 Multiple imputation

Single imputation based on MCA for categorical data

Survey data

PCA on an indicator matrix **X** with specific weights \mathbf{D}_{Σ}



Regularized iterative MCA (Josse et al., 2012)

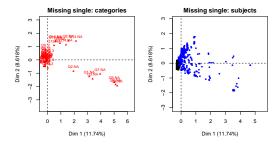
- Initialization: imputation of the indicator matrix (proportion)
- Iterate until convergence
 - **1** Estimation of $\mathbf{F}^{\ell}, \mathbf{V}^{\ell}$: MCA on the completed indicator matrix
 - 2 Imputation of the missing values with the model matrix
 - 3 Column margins are updated

	V1	V2	V3	 V14	ĺ		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u		ind 1	1	0	0	0.71	0.29	1	0	
ind 2	NA	f	g	u		ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	а	е	h	v		ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v		ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u		ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u		ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v		ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	с	f	h	v		ind 1232	0	0	1	0	1	0	1	

 \Rightarrow Imputed values can be seen as degree of membership

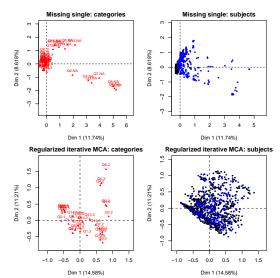
A real example

\bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



A real example

\bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



SI for mixed var.

Multiple imputation

Outline

1 Introduction

② Single imputation for continuous variables

Single imputation for categorical variables

4 Single imputation for mixed variables

5 Multiple imputation

Mixed variables

- \Rightarrow Joint modeling:
 - General location model (Schafer, 1997) \Longrightarrow pb when many categories
 - Transform the categorical variables into dummy variables and deal as continuous variables (Amelia)
 - Latent class models (Vermunt) nonparametric Bayesian models (work in progress, Dunson, Reiter, Duke University)

 \Rightarrow Conditional modeling: linear, logistic, multinomial logit models (mice)

Mixed variables

- \Rightarrow Joint modeling:
 - General location model (Schafer, 1997) \Longrightarrow pb when many categories
 - Transform the categorical variables into dummy variables and deal as continuous variables (Amelia)
 - Latent class models (Vermunt) nonparametric Bayesian models (work in progress, Dunson, Reiter, Duke University)
- \Rightarrow Conditional modeling: linear, logistic, multinomial logit models (mice)
- \Rightarrow Random forests (Stekhoven & Bühlmann, 2012, missForest)
- \Rightarrow Principal components method (Audigier, Husson & Josse, 2014, missMDA)

Iterative Random Forests imputation

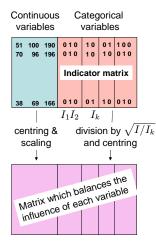
- Initial imputation: mean imputation random category Sort the variables according to the amount of missing values
- 2 Fit a RF \mathbf{X}_{i}^{obs} on variables \mathbf{X}_{-i}^{obs} and then predict \mathbf{X}_{i}^{miss}
- **3** Cycling through variables until a stopping criterion is met

Iterative Random Forests imputation

- Initial imputation: mean imputation random category Sort the variables according to the amount of missing values
 Fit a RF X^{obs} on variables X^{obs}_{-i} and then predict X^{miss}_i
- **8** Cycling through variables until a stopping criterion is met
- \Rightarrow Properties:
 - Non-linear relations, complex interactions
 - *n* << *p*
 - out-of-bag error rates: approximation of the imputation error
- \Rightarrow Outperforms k-nn and mice

Principal component method for mixed data (complete)

Factorial Analysis on Mixed Data (Escofier, 1979), PCAMIX (Kiers, 1991)



A PCA is performed on the weighted matrix

Properties of the method

• The distance between individuals is:

$$d^2(i, l) = \sum_{k=1}^{K_{cont}} (x_{ik} - x_{lk})^2 + \sum_{q=1}^{Q} \sum_{k=1}^{K_q} \frac{1}{l_{k_q}} (x_{iq} - x_{lq})^2$$

• The principal component **F**_s maximises:

$$\sum_{k=1}^{K_{cont}} r^2(\mathbf{F}_s, \mathbf{v}_k) + \sum_{q=1}^{Q_{cat}} \eta^2(\mathbf{F}_s, \mathbf{v}_q)$$

Iterative FAMD algorithm

- 1 Initialization: imputation mean (continuous) and proportion (dummy)
- 2 Iterate until convergence
 - (a) estimation: FAMD on the completed data \Rightarrow **U**, **A**, **V**
 - (b) imputation of the missing values with the model matrix
 - (c) means, standard deviations and column margins are updated

age NA 70 NA 62	weight 100 96 104 68	190 186 194	alcohol NA 1-2 gl/d No 1-2 gl/d	sex M M W M	snore te yes NA no no	obacco no <=1 NA <=1		70	104	190 186 194 165	NA 0 1 0	NA 1 0 1	NA 0 0 0	1	0 0 1 0	0 <mark>NA</mark> 1 1	1 NA 0 0	1 0 NA 0	0 1 <mark>NA</mark> 1	0 0 NA 0
													imr	\t	م۱	١FD	M			
												1	mit	Jui	Cr		111			
age	weight	size	alcohol	sex	snore t	obacco	٦					+			<i>Cr</i>			1		
age 51	weight 100		alcohol 1-2 gl/d	sex M	snore to	obacco no]	51	100	190	0.2	0.7			0		1	1	0	0
•	•	190]	51 70		190 186	0.2 0	0.7		1	0	0	1 0.2	1	0	0
51	100	190	1-2 gl/d	М	yes	no		70					0.1	1	0	0	1 0.2	, v	0 1 0.8	0

 \Rightarrow Imputed values can be seen as degrees of membership

Iterative FAMD

 \Rightarrow Properties:

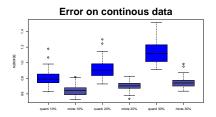
- Imputation based on scores and loadings ⇒ similarities between individuals and relationships between continuous and categorical variables
- Linear relationships
- Compared to a PCA on the (unweighted) indicator matrix, small categories are better imputed
- The number of dimensions is a tuning parameter
- Good performances compared to the method based on random forests, especially for categorical variables

- Simulation pattern
 - 2 independent variables are drawn from a normal distribution
 - 1 variable is replicated 4 times, the other 8 \Rightarrow 2 dimensions
 - Random noise is added
 - Half of the variables in each dimension are split in 3 clusters
 - 10%, 20% or 30% of missing values are chosen at random
 - \Rightarrow Data are constructed (expected) to be in 4 dimensions
- Criterion
 - for continuous data:

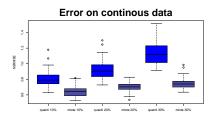
$$N2RMSE = \sqrt{\sum_{i \in \text{missing}} \frac{mean\left(\left(X_i^{true} - X_i^{imp}\right)^2\right)}{var\left(X_i^{true}\right)}}$$

• for categorical data: proportion of falsely classified entries

Imputation using continuous data only Imputation using both continuous and categorical data

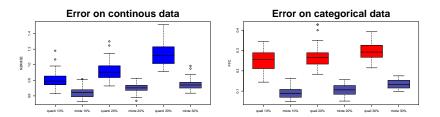


Imputation using continuous data only Imputation using both continuous and categorical data



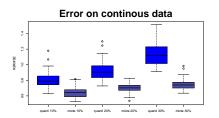
Categorical data improved the imputation on continuous data ...

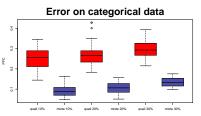
Imputation using continuous data only Imputation using categorical data only Imputation using both continuous and categorical data



Categorical data improved the imputation on continuous data ...

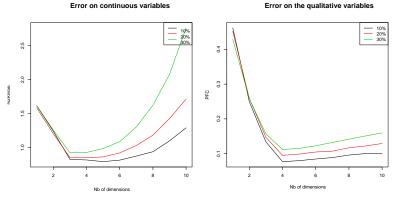
Imputation using continuous data only Imputation using categorical data only Imputation using both continuous and categorical data





Categorical data improved the imputation on continuous data ...

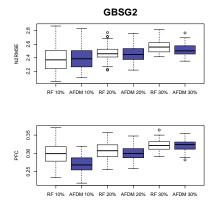
... and continuous data improved the imputation on categorical data



 \Rightarrow The error on the estimation of the number of dimensions has not an important impact on the imputation error ... if the estimation is not too bad

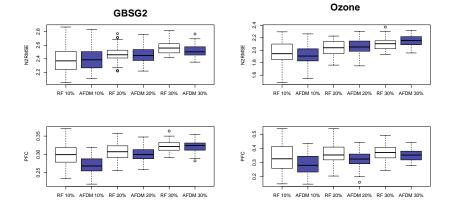
Comparison with random forest on real data sets

Imputations obtained with random forest & iterative algorithm



Comparison with random forest on real data sets

Imputations obtained with random forest & iterative algorithm



58/81

Comparison with random forest

Compared to random forest, imputations are quite similar

Imputations are slightly better:

- for categorical variables
- especially for rare categories

and imputations are worse:

- when there are non-linear relationships between continuous variables
- when there are interactions

Mixed imputation in practice

- > library(missMDA)
- > imputeFAMD(mydata,ncp=2)

```
> library(missForest)
```

```
> missForest(mydata)
```

```
> library(mice)
```

> mice(mydata)

```
> mice(mydata, defaultMethod = "rf") ## mice with random forests
```

Outline

Introduction

2 Single imputation for continuous variables

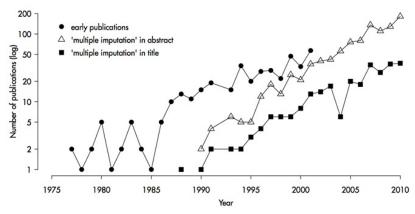
3 Single imputation for categorical variables

④ Single imputation for mixed variables

5 Multiple imputation

Muliple Imputation uses

Number of publications (log) on multiple imputation during the period 1977-2010

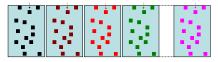


Source: S. Van Buuren webpage

Multiple imputation

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

Generating M imputed data sets



2 Performing the analysis on each imputed data set

3 Combining: variance = within + between imputation variance

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$$
$$T = \frac{1}{M} \sum_m \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_m \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

Generating M imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta}, \hat{\sigma}^2)$

- 2 Performing the analysis on each imputed data set
- **3** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
$\rho = 0.6$	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

Generating M imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta}, \hat{\sigma}^2)$

- 2 Performing the analysis on each imputed data set
- **3** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
$\rho = 0.6$	0.59	0.59
${\cal C}I\mu_y$ 95%	70.8	81.8

 \Rightarrow Variability of the parameters is missing: "improper" imputation

Generating M imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw y_i from the predictive $\mathcal{N}(x_i\hat{\beta}, \hat{\sigma}^2)$

- 2 Performing the analysis on each imputed data set
- **3** Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
$\rho = 0.6$	0.59	0.59
${\cal C}I\mu_y$ 95%	70.8	81.8

 \Rightarrow Variability of the parameters is missing: "improper" imputation \Rightarrow Prediction variance = estimation variance plus noise

 \Rightarrow Proper multiple imputation with $y_i = x_i\beta + \varepsilon_i$

1 Variability of the parameters, M plausible: $(\hat{\beta})^1, ..., (\hat{\beta})^M$

 $\Rightarrow \mathsf{Bootstrap}$

 \Rightarrow Posterior distribution: Bayesian regression

2 Noise: for m = 1, ..., M, missing values y_i^m are imputed by drawing from the predictive distribution $\mathcal{N}(x_i\hat{\beta}^m, (\hat{\sigma}^2)^m)$

Joint modeling

 \Rightarrow Hypothesis $\mathbf{x}_{i.} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}
ight)$ Algorithm:

 Bootstrap rows: X¹, ..., X^M EM algorithm: (μ̂¹, Σ̂¹), ..., (μ̂^M, Σ̂^M)
 Imputation: x^m_{ij} drawn from N (μ̂^m, Σ̂^m)
 Easy to parallelized
 Implemented in Amelia (website)

Amelia Earhart

James Honaker

Gary King

Matt Blackwell

Conditional modeling

 \Rightarrow Hypothesis: one model/variable

Algorithm:

- 1 Initial imputation: mean imputation
- 2 For a variable *j*
 - 2.1 (β^{-j},σ^{-j}) drawn from a Bootstrap or a posterior distribution
 - 2.2 Imputation: stochastic regression x_{ij} drawn from $\mathcal{N}\left(\mathbf{X}_{-j}\boldsymbol{\beta}^{-j}, \sigma^{-j}\right)$
- **3** Cycling through variables
- 4 Repeat *M* times steps 2 and 3

Implemented in mice (website)

"There is no clear-cut method for determining whether the MICE algorithm has converged"

Stef van Buuren

Joint / Conditional modeling

 \Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Appears to work quite well in practice
- \Rightarrow Drawbacks: one model/variable... tedious...

Joint / Conditional modeling

 \Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Appears to work quite well in practice
- \Rightarrow Drawbacks: one model/variable... tedious...
- \Rightarrow What to do with high correlation or when n < p?
 - JM shrinks the covariance $\Sigma + k\mathbb{I}$ (selection of k?)
 - CM: ridge regression or predictors selection/variable \Rightarrow a lot of tuning ... not so easy ...

Multiple imputation with PCA and Bootstrap

$$egin{array}{rcl} x_{ij} &=& ilde{x}_{ij} + arepsilon_{ij} \ , \ arepsilon_{ij} \sim \mathcal{N}(0,\sigma^2) \ &=& \displaystyle{\sum_{s=1}^S \sqrt{\lambda_s} u_{is} v_{js} + arepsilon_{ij}} \end{array}$$

- **1** Variability of the parameters, M plausible: $(\hat{x}_{ij})^1, ..., (\hat{x}_{ij})^M$ Bootstrap residuals: $\mathbf{X}^1 = \hat{\mathbf{X}} + \varepsilon^1, ..., \mathbf{X}^M = \hat{\mathbf{X}} + \varepsilon^M$ Iterative PCA: $\hat{\mathbf{X}}^1 = \mathbf{U}^1 \mathbf{\Lambda}^1 \mathbf{V}^1, ..., \hat{\mathbf{X}}^M = \mathbf{U}^M \mathbf{\Lambda}^M \mathbf{V}^M$
- 2 Noise: for m = 1, ..., M, missing values x_{ij}^m are imputed by drawing from the predictive distribution $\mathcal{N}(\hat{x}_{ij}^m, \hat{\sigma}^2)$

Implemented in missMDA (website)

François Husson

Julie Josse

Joint, conditional and PCA

 \Rightarrow Good estimates of the parameters and their variance from an incomplete data (coverage close to 0.95) The variability due to missing values is well taken into account

Amelia & mice have difficulties with high correlations or n < p missMDA does not but requires a tuning parameter: number of dim.

Amelia & missMDA are based on linear relationships mice is more flexible (one model per variable)

Multiple imputation in practice

\Rightarrow Step 1: Generate *M* imputed data sets

```
> library(Amelia)
```

> res.amelia <- amelia(don,m=100) ## in combination with zelig</pre>

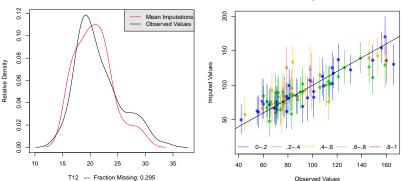
```
> library(mice)
```

> res.mice <- mice(don,m=100,defaultMethod="norm.boot")</pre>

```
> library(missMDA)
```

- > res.MIPCA <- MIPCA(don,ncp=2,B=100)</pre>
- > res.MIPCA\$resMI

\Rightarrow Step 2: visualization



Observed and Imputed values of T12

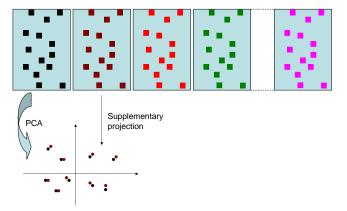
Observed versus Imputed Values of maxO3

- > library(Amelia)
- > res.amelia <- amelia(don,m=100)</pre>
- > compare.density(res.amelia, var="T12")
- > overimpute(res.amelia, var="max03")

function stripplot in mice

 \Rightarrow Step 2: visualization

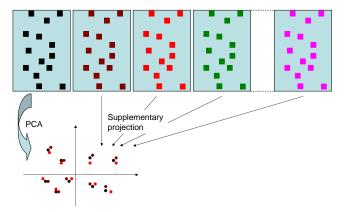
 \Rightarrow Individuals position (and variables) with other predictions



Regularized iterative PCA \Rightarrow reference configuration

 \Rightarrow Step 2: visualization

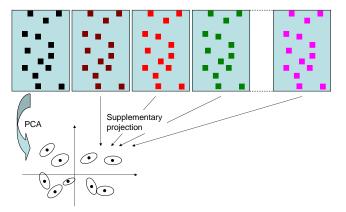
 \Rightarrow Individuals position (and variables) with other predictions



Regularized iterative PCA \Rightarrow reference configuration

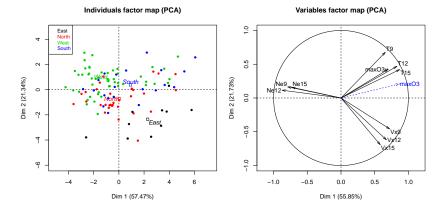
 \Rightarrow Step 2: visualization

 \Rightarrow Individuals position (and variables) with other predictions



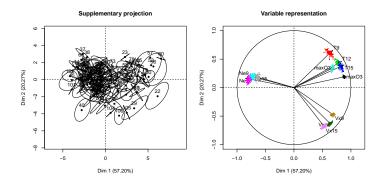
Regularized iterative PCA \Rightarrow reference configuration

PCA representation



- > imp <- cbind.data.frame(res.comp\$completeObs,ozone[,12])</pre>
- > res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)</pre>
- > plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
- > res.pca\$ind\$coord #scores (principal components)

- \Rightarrow Step 2: visualization
- > res.MIPCA <- MIPCA(don,ncp=2)</pre> > plot(res.MIPCA,choice= "ind.supp"); plot(res.MIPCA,choice= "var ")



 \Rightarrow Step 3. Regression on each table and pool the results

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$$
$$T = \frac{1}{M} \sum_{m} \widehat{Var} \left(\hat{\beta}_{m} \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m} \left(\hat{\beta}_{m} - \hat{\beta} \right)^{2}$$

> library(mice)

- > imp.mice <- mice(don,m=100,defaultMethod="norm")</pre>
- > lm.mice.out <- with(imp.mice, lm(maxO3 ~ T9+T12+T15+Ne9+...+Vx15+maxO3v))
- > pool.mice <- pool(lm.mice.out)</pre>
- > summary(pool.mice)

	est	se	t	df	Pr(> t)	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
Т9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Remarks

 \Rightarrow MI theory: good theory for regression parameters. Others?

 \Rightarrow Imputation model as complex as the analysis model (interaction)

Remarks

 \Rightarrow MI theory: good theory for regression parameters. Others?

 \Rightarrow Imputation model as complex as the analysis model (interaction)

- \Rightarrow Some practical issues:
 - Imputation not in agreement (X and X^2): missing passive
 - Imputation out of range?
 - Problems of logical bounds (> 0) ⇒ truncation?

To conclude

Take home message:

- "The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster and Rubin, 1983)
- Advanced methods are available to estimate parameters and their variance (taking into account the variability due to missing values)
- Multiple imputation is an appealing method but ... how can we do with big data?
- Still an active area of research

Ressources

\Rightarrow Softwares:

- van Buuren webpage: http://www.stefvanbuuren.nl/mi/Software.html
- R task View: Official Statistics & Survey Methodology
- \Rightarrow Books:
 - van Buuren (2012). Flexible Imputation of Missing Data. Chapman & Hall/CRC
 - Carpenter & Kenward (2013). *Multiple Imputation and its Application*. Wiley
 - G. Molenberghs, G. Fitzmaurice, M.G. Kenward, A. Tsiatis & G. Verbeke (nov 2014). *Handbook of Missing Data*. Chapman & Hall/CRC

 \Rightarrow J.L. Schafer & J.W. Graham, 2002. Missing Data: Our View of the State of the Art. *Psychological Methods*, **7** 147-177

Contributors on the topic of multiple imputation

- J. Honaker G. King M. Blackwell (Harvard): Amelia
- S. van Buuren (Utrecht): mice
- F. Husson J. Josse (Rennes): missMDA
- A. Gelman J. Hill Y. Su (Colombia): mi
- J. Reiter (Duke): NPBayesImpute Non-Parametric Bayesian Multiple Imputation for Categorical Data
- J. Bartlett J. Carpenter M. Kenward (UCL): smcfcs Substantive model compatible FCS multiple imputation
- H. Goldstein (Bristol) : realcom for multi-level data
- J.K. Vermunt (Tilburg): poLCA latent class models

Conference on missing data Thank you for your attention missDATA 2015

AGROCAMPUS OUEST **Rennes**, France

June 18-19, 2015

The MissData conference, event of the Data Mining and Learning group of the French Statistical Society, will focus on the challenging

http://missdata2015.agrocampus-ouest.fr/