Handling missing values with a special focus on the use of principal components methods

François Husson \& Julie Josse
Applied mathematics department, Agrocampus Ouest, Rennes, France

source: http://www.etsy.com

Research activities

Research activities

Research activities

Research activities

Research activities

- Exploratory multivariate data analysis (principal components methods to visualize data)
- Missing values
- Fields of application: Bio-sciences; sensory analysis
- Books (Exploratory multivariate analysis with R, R for Statistics and 3 books in French)
- R packages (FactoMineR - missMDA - SensoMineR)
- A MOOC on exploratory multivariate data analysis

Outline

(1) Introduction

(2) Single imputation for continuous variables
(3) Single imputation for categorical variables
(4) Single imputation for mixed variables

5 Multiple imputation

Missing values

"The best thing to do with missing values is not to have any"

Missing values are ubiquitous:

- no answer in a questionnaire
- data that are lost or destroyed
- machines that fail
- plants damaged
- ...

Missing values

"The best thing to do with missing values is not to have any"

Missing values are ubiquitous:

- no answer in a questionnaire
- data that are lost or destroyed
- machines that fail
- plants damaged

Still an issue in the big data area

A real dataset

	O3	T9	T12	T15	Ne9	Ne12	Ne15	V $\times 9$	V $\times 12$	V $\times 15$	O3v
0601	NA	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	17	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.954	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
									\vdots	\vdots	
\vdots											
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Some references

Joseph L. Schafer

Little \& Rubin $(1987,2002)$

Roderick Little

Donald Rubin

Suggested reading: chap 25 of Gelman \& Hill (2006)

Andrew Gelman

Jennifer L. Hill

Missing values problematic

A very simple way: deletion (default lm function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values

Missing values problematic

A very simple way: deletion (default lm function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
- MCAR: probability does not depend on any values
- MAR: probability may depend on values on other variables
- MNAR: probability depends on the value itself
(Ex: Income - Age)

Missing values problematic

A very simple way: deletion (default lm function in R)

Dealing with missing values depends on:

- the pattern of missing values
- the mechanism leading to missing values
- MCAR: probability does not depend on any values
- MAR: probability may depend on values on other variables
- MNAR: probability depends on the value itself
(Ex: Income - Age)
\Rightarrow Visualization of missing data

Count missing values

```
> library(VIM)
> res<-summary(aggr(don, prop=TRUE,combined=TRUE))$combinations
> res[rev(order(res[,2])),]
```

Variables sorted by
number of missings:
Variable Count
Ne12 0.37500000
T9 0.33035714
T15 0.33035714
Ne9 0.30357143
T12 0.29464286
Ne15 0. 28571429
Vx15 0.18750000
Vx9 0.16071429
max03 0.14285714
$\max 03 v 0.10714286$
Vx12 0.08928571

Combinations	Count	Percent
$0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0$	13	11.6071429
$0: 1: 1: 1: 0: 0: 0: 0: 0: 0: 0$	7	6.2500000
$0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0$	5	4.4642857
$0: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0$	4	3.5714286
$0: 1: 0: 0: 1: 1: 1: 0: 0: 0: 0$	3	2.6785714
$0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0$	3	2.6785714
$0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0$	3	2.6785714
$0: 0: 0: 0: 1: 1: 1: 0: 0: 0: 0$	3	2.6785714
$0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 1$	3	2.6785714
$0: 1: 1: 1: 1: 0: 0: 0: 0: 0: 0$	2	1.7857143
$0: 0: 0: 0: 1: 0: 0: 0: 0: 1: 0$	2	1.7857143
$0: 0: 0: 0: 0: 0: 1: 1: 0: 0: 0$	2	1.7857143
$0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0$	2	1.7857143

Pattern visualization

> library(VIM)
> aggr(don,only.miss=TRUE, sortVar=TRUE)

Visualization


```
> library(VIM)
> matrixplot(don, sortby=2)
> marginplot(don[,c("T9","max03")])
```


Visualization with Multiple Correspondence Analysis

\Rightarrow Create the missingness matrix

```
> mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))
> mis.ind[is.na(don)]="m"
> dimnames(mis.ind)=dimnames(don)
> mis.ind
```

	\max	T9	T12	T15	Ne9	Ne	Ne	Vx9	Vx	Vx	ma
20010601	"o"	"0"	"0"	"m"	"0"	"0"	"0"	"0"	"0"	"o"	"o"
20010602	"0"	"m"	"m"	"m"	"o"	"0"	"o"	"0"	"0"	"0	"0"
20010603	"0"	"O"	"o"	"O"	"o"	"m"	"m"	"0"	"m"	"0"	"0"
20010604	"0"	"0"	"0"	"m"	"0"	"0"	"0"	"m"	"O"	"0"	"0"
20010605	"0"	"m"	"o"	"O"	"m"	"m"	"m"	"O"	"0	"0	"0"
20010606	"0"	"0"	"0"	"0"	"o"	"m"	"o"	"0"	"0"	"0"	"0"
20010607	"0"	"0"	"0"	"○"	"0"	"0"	"m"	"0"	"O"	"0"	"0"
20010610	"O"	"0"	"0"	"O"	"0"	"0"	"m"	"0"	"O"	"O"	"0"

Visualization with Multiple Correspondence Analysis

MCA graph of the categories


```
> library(FactoMineR)
> resMCA <- MCA(mis.ind)
> plot(resMCA,invis="ind",title="MCA graph of the categories")
```


Recommended approaches

\Rightarrow Modify the method, the estimation process to deal with missing values
\Rightarrow Imputation (multiple imputation) to get a completed data set on which you can perform any statistical method

Expectation - Maximization (Dempster et al., 1977)

Need the modification of the estimation process (not always easy!)
Rationale to get ML estimates on the observed values max $L_{o b s}$ through max of $L_{\text {comp }}$ of $X=\left(X_{o b s}, X_{m i s s}\right)$. Augment the data to simplify the problem

E step (conditional expectation):

$$
Q\left(\theta, \theta^{\ell}\right)=\int \ln (f(X \mid \theta)) f\left(X_{m i s s} \mid X_{o b s}, \theta^{\ell}\right) d X_{m i s s}
$$

M step (maximization):

$$
\theta^{\ell+1}=\operatorname{argmax}_{\theta} Q\left(\theta, \theta^{\ell}\right)
$$

Result: when $\theta^{\ell+1} \max Q\left(\theta, \theta^{\ell}\right)$ then $L\left(X_{o b s}, \theta^{\ell+1}\right) \geq L\left(X_{o b s}, \theta^{\ell}\right)$

Maximum likelihood approach

Hypothesis $\mathbf{x}_{i .} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
\Rightarrow Point estimates with EM:

```
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
```


Maximum likelihood approach

Hypothesis $\mathbf{x}_{i .} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
\Rightarrow Point estimates with EM:
> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
\Rightarrow Variances:

- Supplemented EM (Meng, 1991)
- Bootstrap approach:
- Bootstrap rows: $\mathbf{X}^{1}, \ldots, \mathbf{X}^{B}$
- EM algorithm: $\left(\hat{\boldsymbol{\mu}}^{1}, \hat{\boldsymbol{\Sigma}}^{1}\right), \ldots,\left(\hat{\boldsymbol{\mu}}^{B}, \hat{\boldsymbol{\Sigma}}^{B}\right)$

Maximum likelihood approach

Hypothesis $\mathbf{x}_{i .} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
\Rightarrow Point estimates with EM:
> library (norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> getparam.norm(pre,thetahat)
\Rightarrow Variances:

- Supplemented EM (Meng, 1991)
- Bootstrap approach:
- Bootstrap rows: $\mathbf{X}^{1}, \ldots, \mathbf{X}^{B}$
- EM algorithm: $\left(\hat{\boldsymbol{\mu}}^{1}, \hat{\boldsymbol{\Sigma}}^{1}\right), \ldots,\left(\hat{\boldsymbol{\mu}}^{B}, \hat{\boldsymbol{\Sigma}}^{B}\right)$

Issue: develop a specific method for each statistical method

Single imputation methods

Single imputation methods

$\mu_{y}=0$	0.01
$\sigma_{y}=1$	0.5
$\rho=0.6$	0.30
$C l \mu_{y} 95 \%$	39.4

0.01
0.72
0.78
61.6

Single imputation methods

Stochastic regression imputation

0.01
0.99
0.59
70.8

\Rightarrow Standard errors of the parameters $\left(\hat{\sigma}_{\hat{\mu}_{y}}\right)$ calculated from the imputed data set are underestimated

Multiple imputation (Rubin, 1987)

- Generate M plausible values for each missing value

- Perform the analysis on each imputed data set: $\hat{\theta}_{m}, \widehat{\operatorname{Var}}\left(\hat{\theta}_{m}\right)$
- Combine the results: $\hat{\theta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{m}$

$$
T=\frac{1}{M} \sum_{m=1}^{M} \widehat{\operatorname{Var}}\left(\hat{\theta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M}\left(\hat{\theta}_{m}-\hat{\theta}\right)^{2}
$$

\Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

A multiple imputation procedure requires a single imputation method
(1) Single imputation based on normal distribution
(2) Single imputation with PCA
(3) Multiple imputation based on normal distribution
(4) Multiple imputation with Bayesian PCA

Outline

(1) Introduction

(2) Single imputation for continuous variables

3 Single imputation for categorical variables
4. Single imputation for mixed variables
(5) Multiple imputation

Joint modeling

\Rightarrow Hypothesis $\mathbf{x}_{i .} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
Bivariate case with missing values on Y (stochastic regression):

- Estimate β and σ
- Draw from the predictive $y_{i} \sim \mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right)$

Extension to the multivariate case:

- Estimate $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ from an incomplete dataset with EM
- Draw from $\mathcal{N}(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}})$

```
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> rngseed(123)
> imp <- imp.norm(pre,thetahat,don)
```


Conditional modeling

\Rightarrow A model per variable
Example with regression:
(1) Initial imputation: mean imputation
(2) Fit a stochastic regression $\mathbf{X}_{j}^{\text {obs }}$ on the other variables $\mathbf{X}_{-j}^{\text {obs }}$ Predict $\mathbf{X}_{j}^{\text {miss }}$ using the trained regression on $\mathbf{X}_{-j}^{\text {miss }}$
(3) Cycling through variables

```
> library(mice)
> res.cm <- mice(don, m=1)
```


Conditional modeling

\Rightarrow A model per variable
Example with regression:
(1) Initial imputation: mean imputation
(2) Fit a stochastic regression $\mathbf{X}_{j}^{\text {obs }}$ on the other variables $\mathbf{X}_{-j}^{\text {obs }}$ Predict $\mathbf{X}_{j}^{\text {miss }}$ using the trained regression on $\mathbf{X}_{-j}^{\text {miss }}$
(3) Cycling through variables
\Rightarrow With continuous variables and a regression/variable: $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
\Rightarrow Flexibility: different models for each variable
> library (mice)
> res.cm <- mice(don, m=1)

Other single imputation methods

- k-nearest neighbor (class, FNN)
- random forest (missForest, Stekhoven \& Bühlmann, 2011)
\Rightarrow van Buuren: http://www.stefvanbuuren.nl/mi/Software.html
\Rightarrow R task View: Official Statistics \& Survey Methodology
\Rightarrow Imputation based on PCA became famous with the Netflix challenge!

PCA (complete)

Find the subspace that best represents the data

Figure: What's this?
\Rightarrow Best approximation with projection
\Rightarrow Best representation of the variability

PCA (complete)

Find the subspace that best represents the data

Figure: Camel or dromedary? source J.P. Fénelon
\Rightarrow Best approximation with projection
\Rightarrow Best representation of the variability

PCA

\Rightarrow Geometrical point of view: minimize the reconstruction error
Approximation of \mathbf{X} of low rank $(S<p)$:
$\left\|\mathbf{X}_{n \times p}-\hat{\mathbf{X}}_{n \times p}\right\|^{2} \quad$ SVD: $\hat{\mathbf{X}}^{P C A}=\mathbf{U}_{n \times s} \boldsymbol{\Lambda}_{S \times S}^{\frac{1}{2}} \mathbf{V}_{p \times s}^{\prime}=\mathbf{F}_{n \times s} \mathbf{V}_{p \times s}^{\prime}$
$\mathbf{F}=\mathbf{U} \boldsymbol{\Lambda}^{\frac{1}{2}}$ principal components - scores
V principal axes - loadings

PCA

\Rightarrow Geometrical point of view: minimize the reconstruction error
Approximation of \mathbf{X} of low rank $(S<p)$:
$\left\|\mathbf{X}_{n \times p}-\hat{\mathbf{X}}_{n \times p}\right\|^{2} \quad$ SVD: $\hat{\mathbf{X}}^{\mathrm{PCA}}=\mathbf{U}_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} \mathbf{V}_{p \times S}^{\prime}=\mathbf{F}_{n \times s} \mathbf{V}_{p \times S}^{\prime}$
$\mathbf{F}=\mathbf{U} \boldsymbol{\Lambda}^{\frac{1}{2}}$ principal components - scores
V principal axes - loadings
\Rightarrow Model point of view: fixed effect model (Caussinus, 1986)

$$
\begin{aligned}
& \quad \mathbf{X}_{n \times p}=\tilde{\mathbf{X}}_{n \times p}+\varepsilon_{n \times p} \\
& x_{i j}=\sum_{s=1}^{S} \sqrt{d_{s}} q_{i s} r_{j s}+\varepsilon_{i j} \quad \varepsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Maximum likelihood estimates: least squares estimates

Imputation with PCA

\Rightarrow PCA: least squares

$$
\left\|\mathbf{X}_{n \times p}-\mathbf{U}_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} \mathbf{V}_{p \times S}^{\prime}\right\|^{2}
$$

\Rightarrow PCA with missing values: weighted least squares

$$
\left\|\mathbf{W}_{n \times p} *\left(\mathbf{X}_{n \times p}-\mathbf{U}_{n \times S} \boldsymbol{\Lambda}_{S \times S}^{\frac{1}{2}} \mathbf{V}_{p \times S}^{\prime}\right)\right\|^{2}
$$

with $w_{i j}=0$ if $x_{i j}$ is missing, $w_{i j}=1$ otherwise
Many algorithms: weighted alternating least squares (Gabriel \& Zamir, 1979); iterative PCA (Kiers, 1997)

Iterative PCA

$x 1$	$x 2$
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98

Iterative PCA

$$
\begin{array}{rr}
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & \mathrm{NA} \\
2.0 & 1.98 \\
& \\
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & 0.00 \\
2.0 & 1.98
\end{array}
$$

Initialization $\ell=0: \mathbf{X}^{0}$ (mean imputation)

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
$\mathrm{x1}$	$\widehat{x} 2$
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67

PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$;

Iterative PCA

x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
x 1	x2
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67

Missing values imputed with the model matrix $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$

Iterative PCA

x1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x 1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.00
2.0	1.98
x1	$\widehat{x 2}$
-1.98	-2.04
-1.44	-1.56
0.15	-0.18
1.00	0.57
2.27	1.67
x1	$x 2$
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.57
2.0	1.98

The new imputed dataset is $\mathbf{X}^{\ell}=\mathbf{W} * \mathbf{X}+(1-\mathbf{W}) * \hat{\mathbf{X}}^{\ell}$

Iterative PCA

Iterative PCA

x1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	NA
2.0	1.98
x1	x 2
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.57
2.0	1.98
x1	x2
-2.00	-2.01
-1.47	-1.52
0.09	-0.11
1.20	0.90
2.18	1.78
$x 1$	$x 2$
-2.0	-2.01
-1.5	-1.48
0.0	-0.01
1.5	0.90
2.0	1.98

Iterative PCA

Steps are repeated until convergence

Iterative PCA

PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$
Missing values imputed with the model matrix $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$

Iterative PCA

(1) initialization $\ell=0: \mathbf{X}^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$; S dimensions are kept
(b) missing values imputed with $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$; the new imputed dataset is $\mathbf{X}^{\ell}=\mathbf{W} * \mathbf{X}+(1-\mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
(3) steps of estimation and imputation are repeated

Iterative PCA

(1) initialization $\ell=0: \mathbf{X}^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$; S dimensions are kept
(b) missing values imputed with $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$;
the new imputed dataset is $\mathbf{X}^{\ell}=\mathbf{W} * \mathbf{X}+(1-\mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
(c) means (and standard deviations) are updated
(3) steps of estimation and imputation are repeated

Iterative PCA

(1) initialization $\ell=0: \mathbf{X}^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$; S dimensions are kept
(b) missing values imputed with $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$;
the new imputed dataset is $\mathbf{X}^{\ell}=\mathbf{W} * \mathbf{X}+(1-\mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
(c) means (and standard deviations) are updated
(3) steps of estimation and imputation are repeated

Iterative PCA

(1) initialization $\ell=0: \mathbf{X}^{0}$ (mean imputation)
(2) step ℓ :
(a) PCA on the completed data set $\rightarrow\left(\mathbf{U}^{\ell}, \boldsymbol{\Lambda}^{\ell}, \mathbf{V}^{\ell}\right)$; S dimensions are kept
(b) missing values imputed with $\hat{\mathbf{X}}^{\ell}=\mathbf{U}^{\ell} \boldsymbol{\Lambda}^{1 / 2^{\ell}} \mathbf{V}^{\ell \prime}$;
the new imputed dataset is $\mathbf{X}^{\ell}=\mathbf{W} * \mathbf{X}+(1-\mathbf{W}) * \hat{\mathbf{X}}^{\ell}$
(c) means (and standard deviations) are updated
(3) steps of estimation and imputation are repeated
\Rightarrow EM algorithm of the fixed effect model
\Rightarrow Imputation (matrix completion framework, Netflix)
\Rightarrow Reduction of the variability (imputation by $\mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \mathbf{V}^{\prime}$)

Overfitting

$$
\mathbf{X}_{41 \times 6}=\mathbf{F}_{41 \times 2} \mathbf{V}_{2 \times 6}^{\prime}+\mathcal{N}(0,0.5)
$$

Overfitting

$$
\mathbf{X}_{41 \times 6}=\mathbf{F}_{41 \times 2} \mathbf{V}_{2 \times 6}^{\prime}+\mathcal{N}(0,0.5) \quad \Rightarrow 50 \% \text { of NA }
$$

Overfitting

$$
\mathbf{X}_{41 \times 6}=\mathbf{F}_{41 \times 2} \mathbf{V}_{2 \times 6}^{\prime}+\mathcal{N}(0,0.5) \quad \Rightarrow 50 \% \text { of NA }
$$

\Rightarrow fitting error is low: $\|\mathbf{W} *(\mathbf{X}-\hat{\mathbf{X}})\|^{2}=0.48$
\Rightarrow prediction error is high: $\|(1-\mathbf{W}) *(\mathbf{X}-\hat{\mathbf{X}})\|^{2}=5.58$

Overfitting

Overfitting when:

- many parameters / the number of observed values (the number of dimensions S and of missing values are important)
- data are very noisy
\Rightarrow Trust too much the relationship between variables

Remarks:

- missing values: special case of small data set
- iterative PCA: prediction method

Solution:
\Rightarrow Shrinkage methods

Regularized iterative PCA (Josse et al., 2009)

\Rightarrow Initialization - estimation step - imputation step
The imputation step:

$$
\hat{x}_{i j}^{\mathrm{PCA}}=\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}
$$

is replaced by a "shrunk" imputation step:

$$
\hat{x}_{i j}^{\mathrm{rPCA}}=\sum_{s=1}^{S}\left(\frac{\lambda_{s}-\hat{\sigma}^{2}}{\lambda_{s}}\right) \sqrt{\lambda_{s}} u_{i s} v_{j s}=\sum_{s=1}^{S}\left(\sqrt{\lambda_{s}}-\frac{\hat{\sigma}^{2}}{\sqrt{\lambda_{s}}}\right) u_{i s} v_{j s}
$$

Regularized iterative PCA (Josse et al., 2009)

\Rightarrow Initialization - estimation step - imputation step
The imputation step:

$$
\hat{x}_{i j}^{\mathrm{PCA}}=\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}
$$

is replaced by a "shrunk" imputation step:

$$
\begin{gathered}
\hat{x}_{i j}^{\mathrm{rPCA}}=\sum_{s=1}^{S}\left(\frac{\lambda_{s}-\hat{\sigma}^{2}}{\lambda_{s}}\right) \sqrt{\lambda_{s}} u_{i s} v_{j s}=\sum_{s=1}^{S}\left(\sqrt{\lambda_{s}}-\frac{\hat{\sigma}^{2}}{\sqrt{\lambda_{s}}}\right) u_{i s} v_{j s} \\
\hat{\sigma}^{2}=\frac{R S S}{\mathrm{ddl}}=\frac{n \sum_{s=S+1}^{q} \lambda_{s}}{n p-p-n S-p S+S^{2}+S} \quad\left(\mathbf{X}_{n \times p} ; \mathbf{U}_{n \times S} ; \mathbf{V}_{p \times s}\right)
\end{gathered}
$$

Regularized iterative PCA (Josse et al., 2009)

\Rightarrow Initialization - estimation step - imputation step
The imputation step:

$$
\hat{x}_{i j}^{\mathrm{PCA}}=\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}
$$

is replaced by a "shrunk" imputation step:

$$
\hat{x}_{i j}^{r P C A}=\sum_{s=1}^{S}\left(\frac{\lambda_{s}-\hat{\sigma}^{2}}{\lambda_{s}}\right) \sqrt{\lambda_{s}} u_{i s} v_{j s}=\sum_{s=1}^{S}\left(\sqrt{\lambda_{s}}-\frac{\hat{\sigma}^{2}}{\sqrt{\lambda_{s}}}\right) u_{i s} v_{j s}
$$

$\hat{\sigma}^{2}=\frac{R S S}{\mathrm{ddl}}=\frac{n \sum_{s=S+1}^{q} \lambda_{s}}{n p-p-n S-p S+S^{2}+S} \quad\left(\mathbf{X}_{n \times p} ; \mathbf{U}_{n \times S} ; \mathbf{V}_{p \times S}\right)$
Between hard/soft thresholding (Mazumder, Hastie \& Tibshirani, 2010) σ^{2} small \rightarrow regularized PCA \approx PCA
σ^{2} large \rightarrow mean imputation

Properties of the imputation

- Good imputation quality when the structure is strong (imputation using similarities between individuals and relationship between variables)
- Competitive with random forests

Imputation with PCA in practice

\Rightarrow Step 1: Estimation of the number of dimensions
(Cross Validation, Bro, 2008; GCV, Josse \& Husson, 2011)
> library (missMDA)
> nb <- estim_ncpPCA(don, method.cv="Kfold")
> nb\$ncp \#2
> plot(0:5,nb\$criterion,xlab="nb dim", ylab="MSEP")

Imputation with PCA in practice

\Rightarrow Step 2: Imputation of the missing values

```
> res.comp <- imputePCA(don,ncp=2)
> res.comp$completeObs[1:3,]
    max03 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 max03v
0601 87 15.60 18.50 20.47 4 4.00 8.00 0.69 -1.71 -0.69 84
0602 82 18.51 20.88 21.81 5 5.00 7.00 -4.33 -4.00 -3.00 87
0603 92 15.30 17.60 19.50 2 3.98 3.81 2.95 1.97
```


Cherry on the cake: PCA on incomplete data!

 \Rightarrow visualization of the incomplete data: a crucial stepIndividuals factor map (PCA)

Variables factor map (PCA)


```
> imp <- cbind.data.frame(res.comp$completeObs,ozone[,12])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca$ind$coord #scores (principal components)
```


An ecological data set

Glopnet data: 2494 species described by 6 quantitative variables

- LMA (leaf mass per area)
- LL (leaf lifespan)
- Amass (photosynthetic assimilation)
- Nmass (leaf nitrogen),
- Pmass (leaf phosphorus)
- Rmass (dark respiration rate)
and 1 categorical variable: the biome
Wright IJ, et al. (2004). The worldwide leaf economics spectrum. Nature, 428:821.
www.nature.com/nature/journal/v428/n6985/extref/nature02403-s2.xls

An ecological data set

```
> sum(is.na(don))/(nrow(don)*ncol(don)) # 53% of missing values
[1] 0.5338145
> dim(na.omit(don)) ## Delete species with missing values
[1] 72 6
## only 72 remaining species!
> library(VIM)
> aggr(don,numbers=TRUE,sortVar=TRUE)
```


An ecological data set

MCA graph of the categories


```
> mis.ind <- matrix("o",nrow=nrow(don),ncol=ncol(don))
> mis.ind[is.na(don)] <- "m"
> dimnames(mis.ind) <- dimnames(don)
> library(FactoMineR)
> resMCA <- MCA(mis.ind)
> plot(resMCA,invis="ind",title="MCA graph of the categories")
```


Percentage of inertia if the variables are independent

	Number of variables															
nbind	4	5	6	7	8	9	10	11	12	13	14	15	16			
5	96.5	93.1	90.2	87.6	85.5	83.4	81.9	80.7	79.4	78.1	77.4	76.6	75.5			
6	93.3	88.6	84.8	81.5	79.1	76.9	75.1	73.2	72.2	70.8	69.8	68.7	68.0			
7	90.5	84.9	80.9	77.4	74.4	72.0	70.1	68.3	67.0	65.3	64.3	63.2	62.2			
8	88.1	82.3	77.2	73.8	70.7	68.2	66.1	64.0	62.8	61.2	60.0	59.0	58.0			
9	86.1	79.5	74.8	70.7	67.4	65.1	62.9	61.1	59.4	57.9	56.5	55.4	54.3			
10	84.5	77.5	72.3	68.2	65.0	62.4	60.1	58.3	56.5	55.1	53.7	52.5	51.5			
11	82.8	75.7	70.3	66.3	62.9	60.1	58.0	56.0	54.4	52.7	51.3	50.1	49.2			
12	81.5	74.0	68.6	64.4	61.2	558.3	55.8	54.0	52.4	50.9	49.3	48.2	47.2			
13	80.0	72.5	67.2	62.9	59.4	56.7	54.4	52.2	50.5	48.9	4.7	46.6	45.4			
14	79.0	71.5	65.7	61.5	58.1	55.1	52.8	50.8	49.0	47.5	46.2	45.0	44.0			
15	78.1	70.3	64.6	60.3	57.0	53.9	51.5	49.4	47.8	46.1	44.9	43.6	42.5			
16	77.3	69.4	63.5	59.2	55.6	52.9	50.3	48.3	46.6	45.2	43.6	42.4	41.4			
17	76.5	68.4	62.6	58.2	54.7	51.8	49.3	47.1	45.5	44.0	42.6	41.4	40.3			
18	75.5	67.6	61.8	57.1	53.7	50.8	48.4	46.3	44.6	43.0	41.6	40.4	39.3			
19	75.1	67.0	60.9	56.5	52.8	49.9	47.4	45.5	43.7	42.1	40.7	39.6	38.4			
20	74.1	6.1	60.1	55.6	52.1	49.1	46.6	44.7	42.9	41.3	39.8	38.7	37.5			
25	72.0	63.3	57.1	52.5	48.9	46.0	43.4	41.4	39.6	38.1	36.7	35.5	34.5			
30	69.8	61.1	55.1	50.3	46.7	43.6	41.1	39.1	37.3	35.7	34.4	33.2	32.1			
35	68.5	59.6	53.3	48.6	44.9	41.9	39.5	37.4	35.6	34.0	32.7	31.6	30.4			
40	67.5	58.3	52.0	47.3	43.4	40.5	38.0	36.0	34.1	32.7	31.3	30.1	29.1			
45	66.4	57.1	50.8	46.1	42.4	39.3	36.9	34.8	33.1	31.5	30.2	29.0	27.9			
50	65.6	56.3	49.9	45.2	41.4	38.4	35.9	33.9	32.1	30.5	29.2	28.1	27.0			
100	60.9	51.4	44.9	40.0	36.3	33.3	31.0	28.9	27.2	25.8	24.5	23.3	22.3			
2500			35.6													

Table: 95th percentile of the percentage of inertia explained by the first component of 10,000 MCAs performed on tables made up of independent variables with 2 categories.

Percentage of inertia if the variables are independent

	Number of variables													
nbind	17	18	19	20	25	30	35	40	50	75	100	150	200	
5	74.9	74.2	73.5	72.8	70.7	68.8	67.4	66.4	64.7	62.0	60.5	58.5	57.4	
6	67.0	66.3	65.6	64.9	62.3	60.4	58.9	57.6	55.8	52.9	51.0	49.0	47.8	
7	61.3	60.7	59.7	59.1	56.4	54.3	52.6	51.4	49.5	46.4	44.6	42.4	41.2	
8	57.0	56.2	55.4	54.5	51.8	49.7	47.8	46.7	44.6	41.6	39.8	37.6	36.4	
9	53.6	52.5	51.8	51.2	48.1	45.9	44.4	42.9	41.0	38.0	36.1	34.0	32.7	
10	50.6	49.8	49.0	48.3	45.2	42.9	41.4	40.1	38.0	35.0	33.2	31.0	29.8	
11	48.1	47.2	46.5	45.8	42.8	40.6	39.0	37.7	35.6	32.6	30.8	28.7	27.5	
12	46.2	45.2	44.4	43.8	40.7	38.5	36.9	35.5	33.5	30.5	28.8	26.7	25.5	
13	44.4	43.4	42.8	41.9	39.0	36.8	35.1	33.9	31.8	28.8	27.1	25.0	23.9	
14	42.9	42.0	41.3	40.4	37.4	35.2	33.6	32.3	30.4	27.4	25.7	23.6	22.4	
15	41.6	40.7	39.8	39.1	36.2	34.0	32.4	31.1	29.0	26.0	24.3	22.4	21.2	
16	40.4	39.5	38.7	37.9	35.0	32.8	31.1	29.8	27.9	24.9	23.2	21.2	20.1	
17	39.4	38.5	37.6	36.9	33.8	31.7	30.1	28.8	26.8	23.9	22.2	20.3	19.2	
18	38.3	33.4	36.7	35.8	32.9	30.7	29.1	27.8	25.9	22.9	21.3	19.4	18.3	
19	37.4	36.5	35.8	34.9	32.0	29.9	28.3	27.0	25.1	22.2	20.5	18.6	17.5	
20	36.7	35.8	34.9	34.2	31.3	29.1	27.5	26.2	24.3	21.4	19.8	18.0	16.9	
25	33.5	32.5	31.8	31.1	28.1	26.0	24.5	23.3	21.4	18.6	17.0	15.2	14.2	
30	31.2	30.3	29.5	28.8	26.0	23.9	22.3	21.1	19.3	16.6	15.1	13.4	12.5	
35	29.5	28.6	27.9	27.1	24.3	22.2	20.7	19.6	17.8	15.2	13.7	12.1	11.1	
40	28.1	27.3	26.5	25.8	23.0	21.0	19.5	18.4	16.6	14.1	12.7	11.1	10.2	
45	27.0	26.1	25.4	24.7	21.9	20.0	18.5	17.4	15.7	13.2	11.8	10.3	9.4	
50	26.1	25.3	24.6	23.8	21.1	19.1	17.7	16.6	14.9	12.5	1.1	9.6	8.7	
100	21.5	20.7	19.9	19.3	16.7	14.9	13.6	12.5	11.0	8.9	7.7	6.4	5.7	

Table: 95th percentile of the percentage of inertia explained by the first component of 10,000 MCAs performed on tables made up of independent variables with 2 categories.

An ecological data set

What about mean imputation?

Individuals factor map (PCA)

An ecological data set

```
Individuals factor map (PCA)
```


Variables factor map (PCA)


```
> library (missMDA)
> nb <- estim_ncpPCA(don,method.cv="Kfold",nbsim=100)
> res.comp <- imputePCA(don,ncp=2)
> imp <- cbind.data.frame (res.comp\$completeObs,tab.init[,1:4])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca\$ind\$coord \#scores (principal components)
```


Outline

(1) Introduction

(2) Single imputation for continuous variables
(3) Single imputation for categorical variables
(4) Single imputation for mixed variables
(5) Multiple imputation

Single imputation based on MCA for categorical data

Survey data
PCA on an indicator matrix \mathbf{X} with specific weights \mathbf{D}_{Σ}

Regularized iterative MCA (Josse et al., 2012)

- Initialization: imputation of the indicator matrix (proportion)
- Iterate until convergence
(1) Estimation of $\mathbf{F}^{\ell}, \mathbf{V}^{\ell}$: MCA on the completed indicator matrix
(2) Imputation of the missing values with the model matrix
(3) Column margins are updated

	V1	V2	V3	\ldots	V14
ind 1	a	NA	g	\ldots	u
ind 2	NA	f	g		u
ind 3	a	e	h		v
ind 4	a	e	h		v
ind 5	b	f	h		u
ind 6	c	f	h		u
ind 7	c	f	NA		v
\ldots	\ldots	\ldots	\ldots		\ldots
ind 1232	c	f	h		v

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	\ldots
ind 1	1	0	0	0.71	0.29	1	0	\ldots
ind 2	$\mathbf{0 . 1 2}$	$\mathbf{0 . 2 9}$	0.59	0	1	1	0	\ldots
ind 3	1	0	0	1	0	0	1	\ldots
ind 4	1	0	0	1	0	0	1	\ldots
ind 5	0	1	0	0	1	0	1	\ldots
ind 6	0	0	1	0	1	0	1	\ldots
ind 7	0	0	1	0	1	$\mathbf{0 . 3 7}$	$\mathbf{0 . 6 3}$	\ldots
\ldots								
ind 1232	0	0	1	0	1	0	1	\ldots

\Rightarrow Imputed values can be seen as degree of membership

A real example

- 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

A real example

- 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

Outline

(1) Introduction

(2) Single imputation for continuous variables

3 Single imputation for categorical variables
(4) Single imputation for mixed variables
(5) Multiple imputation

Mixed variables

\Rightarrow Joint modeling:

- General location model (Schafer, 1997) \Longrightarrow pb when many categories
- Transform the categorical variables into dummy variables and deal as continuous variables (Amelia)
- Latent class models (Vermunt) - nonparametric Bayesian models (work in progress, Dunson, Reiter, Duke University)
\Rightarrow Conditional modeling: linear, logistic, multinomial logit models (mice)

Mixed variables

\Rightarrow Joint modeling:

- General location model (Schafer, 1997) \Longrightarrow pb when many categories
- Transform the categorical variables into dummy variables and deal as continuous variables (Amelia)
- Latent class models (Vermunt) - nonparametric Bayesian models (work in progress, Dunson, Reiter, Duke University)
\Rightarrow Conditional modeling: linear, logistic, multinomial logit models (mice)
\Rightarrow Random forests (Stekhoven \& Bühlmann, 2012, missForest)
\Rightarrow Principal components method (Audigier, Husson \& Josse, 2014, missmDA)

Iterative Random Forests imputation

(1) Initial imputation: mean imputation - random category Sort the variables according to the amount of missing values
(2) Fit a RF $\mathbf{X}_{j}^{o b s}$ on variables $\mathbf{X}_{-j}^{o b s}$ and then predict $\mathbf{X}_{j}^{\text {miss }}$
(3) Cycling through variables until a stopping criterion is met

Iterative Random Forests imputation

(1) Initial imputation: mean imputation - random category Sort the variables according to the amount of missing values
(2) Fit a RF $\mathbf{X}_{j}^{o b s}$ on variables $\mathbf{X}_{-j}^{o b s}$ and then predict $\mathbf{X}_{j}^{\text {miss }}$
(3) Cycling through variables until a stopping criterion is met
\Rightarrow Properties:

- Non-linear relations, complex interactions
- $n \ll p$
- out-of-bag error rates: approximation of the imputation error
\Rightarrow Outperforms k-nn and mice

Principal component method for mixed data (complete)

Factorial Analysis on Mixed Data (Escofier, 1979), PCAMIX (Kiers, 1991)

A PCA is performed on the weighted matrix

Properties of the method

- The distance between individuals is:

$$
d^{2}(i, I)=\sum_{k=1}^{K_{\text {cont }}}\left(x_{i k}-x_{l k}\right)^{2}+\sum_{q=1}^{Q} \sum_{k=1}^{K_{q}} \frac{1}{I_{k_{q}}}\left(x_{i q}-x_{l q}\right)^{2}
$$

- The principal component \mathbf{F}_{s} maximises:

$$
\sum_{k=1}^{K_{\text {cont }}} r^{2}\left(\mathbf{F}_{s}, v_{k}\right)+\sum_{q=1}^{Q_{\text {cat }}} \eta^{2}\left(\mathbf{F}_{s}, v_{q}\right)
$$

Iterative FAMD algorithm

(1) Initialization: imputation mean (continuous) and proportion (dummy)
(2) Iterate until convergence
(a) estimation: FAMD on the completed data $\Rightarrow \mathbf{U}, \boldsymbol{\Lambda}, \mathbf{V}$
(b) imputation of the missing values with the model matrix
(c) means, standard deviations and column margins are updated

age	weight	size	alcohol	sex	nore	acco												
NA	100	190	NA	M	yes	no	NA	100	190	NA	NA	NA	10	0	1	1	0	0
70	96	186	1-2 gl/d	M	NA	<=1	70	96	186	0	1	0	10	NA	NA	0	1	0
NA	104	194	No	W	no	NA	NA	104	194	1	0	0	01	1	0	NA	NA	NA
62	68	165	$1-2 \mathrm{gl} / \mathrm{d}$	M	no	$<=1$	62	68	165	0	1	0	10	1	0	0	1	0
							imputeAFDM											
age weight size alcohol sex snore tobacco																		
51	100	190	$1-2 \mathrm{gl} / \mathrm{d}$	M	yes	no	51	100	190	0.2	0.7	0.1	10	0	1	1	0	0
70	96		1-2 gl/d	M	no	<=1	70	96	186	0	1	0	10	0.8	0.2	0	1	0
48	104	194	No	W	no	<=1	48	104	194	1	0	0	01	1	0	0.1	0.8	0.1
62	68	165	$1-2 \mathrm{gl} / \mathrm{d}$	M	no	$<=1$	62	68	165	0	1	0	10	1	0	0	1	0

\Rightarrow Imputed values can be seen as degrees of membership

Iterative FAMD

\Rightarrow Properties:

- Imputation based on scores and loadings \Rightarrow similarities between individuals and relationships between continuous and categorical variables
- Linear relationships
- Compared to a PCA on the (unweighted) indicator matrix, small categories are better imputed
- The number of dimensions is a tuning parameter
- Good performances compared to the method based on random forests, especially for categorical variables

Simulations

- Simulation pattern
- 2 independent variables are drawn from a normal distribution
- 1 variable is replicated 4 times, the other $8 \Rightarrow 2$ dimensions
- Random noise is added
- Half of the variables in each dimension are split in 3 clusters
- $10 \%, 20 \%$ or 30% of missing values are chosen at random
\Rightarrow Data are constructed (expected) to be in 4 dimensions
- Criterion
- for continuous data:

$$
N 2 R M S E=\sqrt{\sum_{i \in \text { missing }} \frac{\operatorname{mean}\left(\left(X_{i}^{\text {true }}-X_{i}^{\text {imp }}\right)^{2}\right)}{\operatorname{var}\left(X_{i}^{\text {true }}\right)}}
$$

- for categorical data: proportion of falsely classified entries

Simulations

Imputation using continuous data only Imputation using both continuous and categorical data

Simulations

Imputation using continuous data only Imputation using both continuous and categorical data

Categorical data improved the imputation on continuous data ...

Simulations

Imputation using continuous data only Imputation using categorical data only Imputation using both continuous and categorical data

Error on categorical data

Categorical data improved the imputation on continuous data ...

Simulations

Imputation using continuous data only Imputation using categorical data only Imputation using both continuous and categorical data

Categorical data improved the imputation on continuous data ...

Error on categorical data

... and continuous data improved the imputation on categorical data

Simulations

Error on continuous variables

Error on the qualitative variables

\Rightarrow The error on the estimation of the number of dimensions has not an important impact on the imputation error ... if the estimation is not too bad

Comparison with random forest on real data sets

Imputations obtained with random forest \& iterative algorithm

GBSG2

Comparison with random forest on real data sets

 Imputations obtained with random forest \& iterative algorithmGBSG2

Ozone

Comparison with random forest

Compared to random forest, imputations are quite similar

Imputations are slightly better:

- for categorical variables
- especially for rare categories
and imputations are worse:
- when there are non-linear relationships between continuous variables
- when there are interactions

Mixed imputation in practice

```
> library(missMDA)
> imputeFAMD(mydata,ncp=2)
> library(missForest)
> missForest(mydata)
> library(mice)
> mice(mydata)
> mice(mydata, defaultMethod = "rf") ## mice with random forests
```


Outline

(1) Introduction

(2) Single imputation for continuous variables

3 Single imputation for categorical variables

4 Single imputation for mixed variables
(5) Multiple imputation

Muliple Imputation uses

Number of publications (log) on multiple imputation during the period 1977-2010

Source: S. Van Buuren webpage

Multiple imputation

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors
(1) Generating M imputed data sets

(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

$$
\begin{aligned}
\hat{\beta} & =\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
T & =\frac{1}{M} \sum_{m} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
\end{aligned}
$$

Multiple imputation: bivariate case

(1) Generating M imputed data sets

First idea: several stochastic regression for $m=1, \ldots, M$, draw y_{i} from the predictive $\mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right)$
(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

	$M=1$	$M=50$
$\mu_{y}=0$	0.01	0.01
$\sigma_{y}=1$	0.99	0.99
$\rho=0.6$	0.59	0.59
$C l \mu_{y} 95 \%$	70.8	81.8

Multiple imputation: bivariate case

(1) Generating M imputed data sets

First idea: several stochastic regression for $m=1, \ldots, M$, draw y_{i} from the predictive $\mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right)$
(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

	$M=1$	$M=50$
$\mu_{y}=0$	0.01	0.01
$\sigma_{y}=1$	0.99	0.99
$\rho=0.6$	0.59	0.59
$C l \mu_{y} 95 \%$	70.8	81.8

\Rightarrow Variability of the parameters is missing: "improper" imputation

Multiple imputation: bivariate case

(1) Generating M imputed data sets

First idea: several stochastic regression for $m=1, \ldots, M$, draw y_{i} from the predictive $\mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right)$
(2) Performing the analysis on each imputed data set
(3) Combining: variance $=$ within + between imputation variance

	$M=1$	$M=50$
$\mu_{y}=0$	0.01	0.01
$\sigma_{y}=1$	0.99	0.99
$\rho=0.6$	0.59	0.59
$C l \mu_{y} 95 \%$	70.8	81.8

\Rightarrow Variability of the parameters is missing: "improper" imputation
\Rightarrow Prediction variance $=$ estimation variance plus noise

Multiple imputation: bivariate case

\Rightarrow Proper multiple imputation with $y_{i}=x_{i} \beta+\varepsilon_{i}$
(1) Variability of the parameters, M plausible: $(\hat{\beta})^{1}, \ldots,(\hat{\beta})^{M}$
\Rightarrow Bootstrap
\Rightarrow Posterior distribution: Bayesian regression
(2) Noise: for $m=1, \ldots, M$, missing values y_{i}^{m} are imputed by drawing from the predictive distribution $\mathcal{N}\left(x_{i} \hat{\beta}^{m},\left(\hat{\sigma}^{2}\right)^{m}\right)$

	Improper	Proper
$\mathrm{Cl}_{\mathrm{y}} 95 \%$	0.818	0.935

Joint modeling

\Rightarrow Hypothesis $\mathbf{x}_{i .} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
Algorithm:
(1) Bootstrap rows: $\mathbf{X}^{1}, \ldots, \mathbf{X}^{M}$

EM algorithm: $\left(\hat{\boldsymbol{\mu}}^{1}, \hat{\boldsymbol{\Sigma}}^{1}\right), \ldots,\left(\hat{\boldsymbol{\mu}}^{M}, \hat{\boldsymbol{\Sigma}}^{M}\right)$
(2) Imputation: $x_{i j}^{m}$ drawn from $\mathcal{N}\left(\hat{\boldsymbol{\mu}}^{m}, \hat{\boldsymbol{\Sigma}}^{m}\right)$

Easy to parallelized
Implemented in Amelia (website)

James Honaker Gary King

Amelia Earhart

Conditional modeling

\Rightarrow Hypothesis: one model/variable
Algorithm:
(1) Initial imputation: mean imputation
(2) For a variable j
$2.1\left(\beta^{-j}, \sigma^{-j}\right)$ drawn from a Bootstrap or a posterior distribution
2.2 Imputation: stochastic regression $x_{i j}$ drawn from $\mathcal{N}\left(\mathbf{X}_{-j} \boldsymbol{\beta}^{-j}, \sigma^{-j}\right)$
(3) Cycling through variables
(4) Repeat M times steps 2 and 3

Implemented in mice (website)
"There is no clear-cut method for determining whether the MICE algorithm has converged"

Joint / Conditional modeling

\Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Appears to work quite well in practice
\Rightarrow Drawbacks: one model/variable... tedious...

Joint / Conditional modeling

\Rightarrow Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models!
- Appears to work quite well in practice
\Rightarrow Drawbacks: one model/variable... tedious...
\Rightarrow What to do with high correlation or when $n<p$?
- JM shrinks the covariance $\boldsymbol{\Sigma}+k \mathbb{I}$ (selection of k ?)
- CM: ridge regression or predictors selection/variable \Rightarrow a lot of tuning ... not so easy ...

Multiple imputation with PCA and Bootstrap

$$
\begin{aligned}
x_{i j} & =\tilde{x}_{i j}+\varepsilon_{i j}, \varepsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& =\sum_{s=1}^{S} \sqrt{\lambda_{s}} u_{i s} v_{j s}+\varepsilon_{i j}
\end{aligned}
$$

(1) Variability of the parameters, M plausible: $\left(\hat{x}_{i j}\right)^{1}, \ldots,\left(\hat{x}_{i j}\right)^{M}$ Bootstrap residuals: $\mathbf{X}^{1}=\hat{\mathbf{X}}+\varepsilon^{1}, \ldots, \mathbf{X}^{M}=\hat{\mathbf{X}}+\varepsilon^{M}$ Iterative PCA: $\hat{\mathbf{X}}^{1}=\mathbf{U}^{1} \boldsymbol{\Lambda}^{1} \mathbf{V}^{1}, \ldots, \hat{\mathbf{X}}^{M}=\mathbf{U}^{M} \boldsymbol{\Lambda}^{M} \mathbf{V}^{M}$
(2) Noise: for $m=1, \ldots, M$, missing values $x_{i j}^{m}$ are imputed by drawing from the predictive distribution $\mathcal{N}\left(\hat{x}_{i j}^{m}, \hat{\sigma}^{2}\right)$

Implemented in missMDA (website)

François Husson

Julie Josse

Joint, conditional and PCA

\Rightarrow Good estimates of the parameters and their variance from an incomplete data (coverage close to 0.95)
The variability due to missing values is well taken into account

Amelia \& mice have difficulties with high correlations or $n<p$ missMDA does not but requires a tuning parameter: number of dim.

Amelia \& missMDA are based on linear relationships mice is more flexible (one model per variable)

Multiple imputation in practice

\Rightarrow Step 1: Generate M imputed data sets

```
> library(Amelia)
> res.amelia <- amelia(don,m=100) ## in combination with zelig
> library(mice)
> res.mice <- mice(don,m=100,defaultMethod="norm.boot")
> library(missMDA)
> res.MIPCA <- MIPCA(don,ncp=2,B=100)
> res.MIPCA$resMI
```


Multiple imputation in practice

\Rightarrow Step 2: visualization

Observed and Imputed values of T12

Observed versus Imputed Values of maxO3


```
> library(Amelia)
> res.amelia <- amelia(don,m=100)
> compare.density(res.amelia, var="T12")
> overimpute(res.amelia, var="max03")
```

function stripplot in mice

Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

Multiple imputation in practice

\Rightarrow Step 2: visualization
\Rightarrow Individuals position (and variables) with other predictions

Regularized iterative PCA
\Rightarrow reference configuration

PCA representation

Individuals factor map (PCA)

Variables factor map (PCA)

> imp <- cbind.data.frame(res.comp\$completeObs,ozone[,12])
> res.pca <- PCA(imp,quanti.sup=1,quali.sup=12)
> plot(res.pca, hab=12, lab="quali"); plot(res.pca, choix="var")
> res.pca\$ind\$coord \#scores (principal components)

Multiple imputation in practice

\Rightarrow Step 2: visualization

```
> res.MIPCA <- MIPCA(don,ncp=2)
> plot(res.MIPCA,choice= "ind.supp"); plot(res.MIPCA,choice= "var ")
```


Multiple imputation in practice

\Rightarrow Step 3. Regression on each table and pool the results

$\hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m}$

$$
T=\frac{1}{M} \sum_{m} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
$$

> library (mice)
> imp.mice <- mice(don,m=100,defaultMethod="norm")
$>$ lm.mice.out <- with(imp.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
> pool.mice <- pool(lm.mice.out)
> summary(pool.mice)

	est	se	t	df	$\operatorname{Pr}(>\|\mathrm{t}\|)$	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
T9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
\ldots.										
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Remarks

$\Rightarrow \mathrm{MI}$ theory: good theory for regression parameters. Others?
\Rightarrow Imputation model as complex as the analysis model (interaction)

Remarks

$\Rightarrow \mathrm{MI}$ theory: good theory for regression parameters. Others?
\Rightarrow Imputation model as complex as the analysis model (interaction)
\Rightarrow Some practical issues:

- Imputation not in agreement $\left(X\right.$ and $\left.X^{2}\right)$: missing passive
- Imputation out of range?
- Problems of logical bounds $(>0) \Rightarrow$ truncation?

To conclude

Take home message:

- "The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases." (Dempster and Rubin, 1983)
- Advanced methods are available to estimate parameters and their variance (taking into account the variability due to missing values)
- Multiple imputation is an appealing method but ... how can we do with big data?
- Still an active area of research

Ressources

\Rightarrow Softwares:

- van Buuren webpage: http://www.stefvanbuuren.nl/mi/Software.html
- R task View: Official Statistics \& Survey Methodology
\Rightarrow Books:
- van Buuren (2012). Flexible Imputation of Missing Data. Chapman \& Hall/CRC
- Carpenter \& Kenward (2013). Multiple Imputation and its Application. Wiley
- G. Molenberghs, G. Fitzmaurice, M.G. Kenward, A. Tsiatis \& G. Verbeke (nov 2014). Handbook of Missing Data. Chapman \& Hall/CRC
\Rightarrow J.L. Schafer \& J.W. Graham, 2002. Missing Data: Our View of the State of the Art. Psychological Methods, 7 147-177

Contributors on the topic of multiple imputation

- J. Honaker - G. King - M. Blackwell (Harvard): Amelia
- S. van Buuren (Utrecht): mice
- F. Husson - J. Josse (Rennes): missMDA
- A. Gelman - J. Hill - Y. Su (Colombia): mi
- J. Reiter (Duke): NPBayesImpute Non-Parametric Bayesian Multiple Imputation for Categorical Data
- J. Bartlett - J. Carpenter - M. Kenward (UCL): smcfcs Substantive model compatible FCS multiple imputation
- H. Goldstein (Bristol) : realcom for multi-level data
- J.K. Vermunt (Tilburg): poLCA latent class models

Conference on missing data

Thank you for your attention

missDATA 2015

AGROCAMPUS OUEST Rennes, France

June 18-19, 2015

The MissData conference, event of the Data Mining and Learning group of the French Statistical Society, will focus on the challenging

http://missdata2015.agrocampus-ouest.fr/

