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proportions of the other categories are calculated and used when attributing
those individuals with rare categories.

• Elimination of individuals with rare categories. This solution should be
avoided wherever possible. It should only be used if all of the rare categories
are due to a very small number of individuals (situation which sometimes
occurs when questions remain unanswered).

3.7.2 Description of a Categorical Variable or a
Subpopulation

Multidimensional analysis is often supplemented by univariate analyses which
are used to characterise a number of specific variables. We shall here focus
on describing a specific categorical variable as well as groups of individuals
defined by the categories of this variable. To do so, we can use quantitative
variables, categorical variables, or the categories of categorical variables.

For example, we shall here describe the variable type in detail (cheapest,
luxury, supermarket, etc.); one interesting feature of this variable is that it
has more than two categories. The results of the catdes function applied to
the variable type are detailed as follows:

> catdes(tea,num.var=18)

3.7.2.1 Description of a Categorical Variable by a Categorical
Variable

To evaluate the relationship between the categorical variable we are inter-
ested in (type), and another categorical variable, we can conduct a χ2 test.
The smaller the p-value associated with the χ2 test, the more questionable
the independence hypothesis, and the more the categorical variable charac-
terises the variable type. The categorical variables can therefore be sorted in
ascending order of p-value. In the example (see Table 3.5), the variable place
of purchase is the most closely related to the variable type.

TABLE 3.5
Tea Data: Description of the Variable Type by
the Categorical Variables (Object $test.chi2)

P-value Df
Place of purchase 1.1096e-18 10
Format 8.4420e-11 10
Tearoom 1.6729e-03 5
Friends 4.2716e-02 5
Slimming 4.3292e-02 5
Variety 4.9635e-02 10
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3.7.2.2 Description of a Subpopulation (or a Category) by a
Quantitative Variable

For each category of the categorical variable type and for each quantitative
variable (denoted X), the v-test (a test-value) is calculated as follows:

v-test =
x̄q − x̄√
s2

Iq

(
I−Iq
I−1

) ,
where x̄q is the average of variable X for the individuals of category q, x̄ is
the average of X for all of the individuals, and Iq is the number of individuals
carrying the category q. This value is used to test the following null hypothesis:
the values of X for the individuals who chose the category q are selected at
random from all of the possible values of X. We therefore consider the random
variable X̄q, average of the individuals for category q. Its expected value and
variance are:

E(X̄q) = x̄ and V(X̄q) =
s2

Iq
× I − Iq

I − 1
.

The v-test can therefore be considered a “standardised” deviation between
the mean of those individuals with the category q and the general average.
Among other things, we can attribute a probability to the v-test. If, among
the participants, X is normally distributed according to the null hypothesis,
the X̄q distribution is as follows:

X̄q = N

(
x̄,

s√
Iq

√
I − Iq
I − 1

)
.

If X is not normally distributed, we can still use normal distribution as an
approximate distribution for X̄q. We consider the v-test as a statistic of the
test for H0 (“the average of X for category q is equal to the general average”,
or in other words, “variable X does not characterise category q”) and can
therefore calculate a p-value.

Remark
When categories stem from a clustering: this test can only be applied satis-
factorily to supplementary variables (i.e., which were not used to determine
the categories), but they are also calculated for the active variables for infor-
mation.

As the p-value provides an indication of the “significance” of a given de-
viation, it makes sense to organise the quantitative variables in descending
order of v-test by limiting oneself to p-values less than 5%.

In the example (see below), the only category to be characterised by a
quantitative variable is t luxury. This category is characterised by individuals
of above-average age as the v-test is positive. The average age of those who
buy in this class is 43.4 years whereas the average overall age is 37.1 years.



156 Exploratory Multivariate Analysis by Example Using R

The standard deviations are provided for both the class (16.9) and the overall
population (16.8).

> catdes(tea,num.var=18)
$quanti$cheapest

NULL

$quanti$known.brand

NULL

$quanti$luxury

v.test Mean in category Overall mean sd in category Overall sd p.value

age 3.02 43.4 37.1 16.9 16.8 0.00256

$quanti$shop.brand

NULL

$quanti$unknown

NULL

$quanti$varies

NULL

3.7.2.3 Description of a Subpopulation (or a Category) by the
Categories of a Categorical Variable

The description of a categorical variable can be refined by studying the rela-
tionships between categories. We thus characterise each of the categories of
the variable we are interested in (variable type) by using the categories of the
categorical variables.

These calculations are illustrated using first the variable place of purchase
and second the contingency table for the variables type and place of purchase
(see Table 3.6).

TABLE 3.6
Tea Data: Contingency Table for the Variables Type and Place of
Purchase

Supermarket Supermarket and Specialist Specialist Total
Cheapest 6 1 0 7
Luxury 12 20 21 53
Unknown 10 1 1 12
Famous brand 82 11 2 95
Shop brand 20 1 0 21
Varies 62 44 6 112
Total 192 78 30 300

Let us examine the category luxury and consider the variable place of
purchase which has three categories: supermarket, supermarket+specialist and
specialist shop. We shall look more closely at specialist shop (see Table 3.7.2.3).
The following question is raised: “Is the category luxury characterised by the
category specialist shop?” The objective is to calculate the proportion of
individuals who buy their tea in a specialist shop out of those who buy luxury
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tea Iqt/Iq from the overall percentage of individuals who buy their tea in
specialist shops It/I.

Specialist shop Other Total
Luxury Iqt = 21 32 Iq = 53
Other 9 238 247
Total It = 30 270 I = 300

These two proportions are equal under the null hypothesis of independence:

Iqt
Iq

=
It
I
.

Iq individuals are randomly selected (those with the category we are interested
in luxury) among I (the total population). We shall focus on the random
variable X equal to the number Iqt of occurrences of individuals which have
the characteristic that is being studied (purchased in a specialist shop), while
it must be remembered that their sample size within the population is It.
Under the null hypothesis, the random variable X follows the hypergeometric
distribution H(I, It, Iq). The probability of having a more extreme value than
the observed value can therefore be calculated. For each category of the
variable being studied, each of the categories of the characterising categorical
variables can be sorted in ascending order of p-value.

The first row of Table 3.7 indicates that 70% (21/30; see Table 3.6 or the
extract) of the individuals who buy their tea in specialist shops also belong
to the class luxury ; 39.6% (21/53; see Table 3.6) of the individuals from the
class luxury purchase their tea in specialist shops; 10% (30/300; see Table 3.6)
of the participants purchase their tea in specialist shops. The p-value of the
test (1.58e-11) is provided along with the associated v-test (6.64). The v-test
here corresponds to the quantile of the normal distribution which is associated
with p-value; the sign indicates an over- or underrepresentation (Lebart et al.,
2006).

The categories of all the categorical variables are organised from most to
least characteristic when the category is overrepresented in the given class
(i.e., the category in question) compared to the other categories (the v-test is
therefore positive), and from least characteristic to most when the category
is underrepresented in the class (and the v-test is therefore negative). The
individuals who buy luxury tea are most significantly characterised by the
fact that they do not buy tea in supermarkets (the v-test for supermarkets is
negative, and has the highest absolute value).

3.7.3 The Burt Table

A Burt table is a square table of K×K dimensions, where each row and each
column correspond to one of the categories K of the set of variables. In the
cell (k, k′) we observe the number of individuals who carry both categories k
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TABLE 3.7
Tea Data: Description of the Category Luxury of the Variable Type by the
Categories of the Categorical Variables (Object $category$luxury)

Cla/Mod Mod/Cla Global P-value V-test
Place.of.purchase=specialist.shop 70.00 39.6 10.0 3.16e-11 6.64
Format=loose 55.60 37.7 12.0 5.59e-08 5.43
Variety=black 28.40 39.6 24.7 1.15e-02 2.53
Age Q=60 and + 31.60 22.6 12.7 3.76e-02 2.08
No.effect.health=no.effect.health 27.30 34.0 22.0 3.81e-02 2.07
No.effect.health=not.without.effect 15.00 66.0 78.0 3.81e-02 -2.07
Variety=flavoured 12.40 45.3 64.3 2.86e-03 -2.98
Age Q=15-24 7.61 13.2 30.7 2.48e-03 -3.03
Format=sachet 8.24 26.4 56.7 1.90e-06 -4.76
Place.of.purchase=supermarket 6.25 22.6 64.0 2.62e-11 -6.67

and k′. This table is an extension of the contingency table where there are
more than two categorical variables: it juxtaposes all of the information from
the contingency table of variables taken as pairs (in rows and columns).

A correspondence analysis of this table is used to represent the categories.
As this table is symmetrical, the representation of the cloud of row profiles
is identical to that of the cloud of column profiles (only one of the two rep-
resentations is therefore retained). This representation is very similar to the
representation of the categories as provided by MCA and demonstrates the
collinearity of the principal components of the same rank. However, the in-
ertias associated with each component differ by a coefficient of λs. When λs
is the inertia of s for the MCA, the inertia of component s for a CA of the
Burt table will be λ2s. It can be observed that the percentages of inertia asso-
ciated with the first components of the CA of the Burt table are higher than
the percentages of inertia associated with the first components of the MCA
alone. In the example, the percentages of inertia associated with the first two
components of the MCA are worth 9.88% and 8.10% respectively, compared
with 20.73% and 14.11% for those of the CA.

The Burt table is therefore useful in terms of data storage. Rather than
conserving the complete table of individuals × variables, it is in fact suffi-
cient to construct a Burt table containing the same information in terms of
associations between categories, which are considered in pairs with a view to
conducting the principal component method. When dealing with a very large
number of individuals, the individual responses are often ignored in favour of
the associations between categories.

3.7.4 Missing Values

It is very common for some data to be missing, for a survey conducted by
questionnaire, for example. The easiest way to manage missing values in
datasets with categorical variables is to create a new category for each variable
which contains one or more missing values. A variable j with Kj categories
will therefore have Kj+1 categories if at least one individual possesses missing




